Effective Field Theories

Andrey Grozin
A.G.Grozin@inp.nsk.su

Budker Institute of Nuclear Physics
Novosibirsk

We don't know all physics up to infinitely high energies (or down to infinitely small distances) All our theories are effective low-energy (or large-distance) theories

We don't know all physics up to infinitely high energies (or down to infinitely small distances) All our theories are effective low-energy (or large-distance) theories (except The Theory of Everything if such a thing exists)

We don't know all physics up to infinitely high energies (or down to infinitely small distances) All our theories are effective low-energy (or large-distance) theories (except The Theory of Everything if such a thing exists)
There is a high energy scale M where an effective theory breaks down. Its Lagrangian describes light particles $\left(m_{i} \ll M\right)$ and their interactions at $p_{i} \ll M$ (distances $\gg 1 / M)$; physics at distances $\lesssim 1 / M$ produces local interactions of these light fields.

We don't know all physics up to infinitely high energies (or down to infinitely small distances) All our theories are effective low-energy (or large-distance) theories (except The Theory of Everything if such a thing exists)
There is a high energy scale M where an effective theory breaks down. Its Lagrangian describes light particles ($m_{i} \ll M$) and their interactions at $p_{i} \ll M$ (distances $\gg 1 / M)$; physics at distances $\lesssim 1 / M$ produces local interactions of these light fields.
The Lagrangian contains all possible operators (allowed by symmetries). Coefficients of operators of dimension $n+4$ contain $1 / M^{n}$. If M is much larger than energies we are interested in, we can retain only renormalizable terms (dimension 4), and, maybe, a power correction or two.

EFT in classical mechanics

- Slow motion - characteristic time $1 / \omega$
- Fast motion - characteristic time $1 / \Omega$

$$
\Omega \gg \omega
$$

EFT in classical mechanics

- Slow motion - characteristic time $1 / \omega$
- Fast motion - characteristic time $1 / \Omega$

$$
\Omega \gg \omega
$$

Average over fast oscillations
Effective Lagrangian describes slow motion
Poincaré, Krylov, Bogoliubov, Kapitza, ...

EFT in classical mechanics

$$
m \ddot{x}=-\frac{d U}{d x}+F \quad F=F_{0}(x) \cos \Omega t
$$

EFT in classical mechanics

$$
\begin{aligned}
& m \ddot{x}=-\frac{d U}{d x}+F \quad F=F_{0}(x) \cos \Omega t \\
& U_{\mathrm{eff}}=U+\frac{1}{2 m \Omega^{2}} \overline{F^{2}}
\end{aligned}
$$

Kapitza pendulum

Kapitza pendulum

$$
\lambda=0
$$

Kapitza pendulum

$$
\lambda=0.25
$$

Kapitza pendulum

$$
\lambda=0.5
$$

Kapitza pendulum

$$
\lambda=0.75
$$

Kapitza pendulum

$$
\lambda=1
$$

Kapitza pendulum

$$
\lambda=1.25
$$

Kapitza pendulum

$$
\lambda=1.5
$$

Kapitza pendulum

$$
\lambda=1.75
$$

Kapitza pendulum

$\lambda=2$

Kapitza pendulum

$\lambda=2.25$

Kapitza pendulum

$\lambda=2.5$

Kapitza pendulum

$$
\lambda=2.75
$$

Kapitza pendulum

$$
\lambda=3
$$

Photonia

Here physicists have high-intensity sources and excellent detectors of low-energy photons, but they have no electrons and don't know that such a particle exists.

Photonia

Here physicists have high-intensity sources and excellent detectors of low-energy photons, but they have no electrons and don't know that such a particle exists.

We indignantly refuse to discuss the question "What the experimantalists and their apparata are made of?" as irrelevant.

Photonia

Quantum PhotoDynamics (QPD)
$L=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}$

Photonia

Quantum PhotoDynamics (QPD)
$L=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+c_{1} O_{1}+c_{2} O_{2}$
$O_{1}=\left(F_{\mu \nu} F^{\mu \nu}\right)^{2} \quad O_{2}=F_{\mu \nu} F^{\nu \alpha} F_{\alpha \beta} F^{\beta \mu} \quad c_{1,2} \sim 1 / M^{4}$

Photonia

We work at the order $1 / M^{4}$, there can be only 14 -photon vertex

No corrections to the photon propagator

No renormalization of the photon field
No corrections to the 4-photon vertex
No renormalization of the operators $O_{1,2}$ and the couplings
$c_{1,2}$

Qedland

Physicists in the neighboring Qedland are more advanced: in addition to photons, they know electrons and positrons, and investigate their interactions at energies $E \sim M$. They have constructed a nice theory, QED, which describes their experimental results.

Qedland

Physicists in the neighboring Qedland are more advanced: in addition to photons, they know electrons and positrons, and investigate their interactions at energies $E \sim M$. They have constructed a nice theory, QED, which describes their experimental results.

They don't know muons, but this is another story.

Qedland

Physicists in the neighboring Qedland are more advanced: in addition to photons, they know electrons and positrons, and investigate their interactions at energies $E \sim M$. They have constructed a nice theory, QED, which describes their experimental results.
They don't know muons, but this is another story.
They understand that QPD (constructed in Photonia) is just a low-energy approximation to QED.

Matching

$c_{1,2}$ can be found by matching S-matrix elements

Matching

$c_{1,2}$ can be found by matching S-matrix elements

$$
D=M^{2}-k^{2}-i 0
$$

$$
V(n)=\frac{\Gamma\left(n-\frac{d}{2}\right)}{\Gamma(n)}
$$

Matching

$$
\begin{aligned}
T^{\mu_{1} \mu_{2} \nu_{1} \nu_{2}}= & \frac{e_{0}^{4} M^{-4-2 \varepsilon}}{(4 \pi)^{d / 2}} \Gamma(\varepsilon) \frac{(d-4)(d-6)}{2880} \\
& \times\left(-5 T_{1}^{\mu_{1} \mu_{2} \nu_{1} \nu_{2}}+14 T_{2}^{\mu_{1} \mu_{2} \nu_{1} \nu_{2}}\right)
\end{aligned}
$$

Matching

$$
\begin{aligned}
T^{\mu_{1} \mu_{2} \nu_{1} \nu_{2}}= & \frac{e_{0}^{4} M^{-4-2 \varepsilon}}{(4 \pi)^{d / 2}} \Gamma(\varepsilon) \frac{(d-4)(d-6)}{2880} \\
& \times\left(-5 T_{1}^{\mu_{1} \mu_{2} \nu_{1} \nu_{2}}+14 T_{2}^{\mu_{1} \mu_{2} \nu_{1} \nu_{2}}\right)
\end{aligned}
$$

Heisengerg-Euler Lagrangian

$$
L_{1}=\frac{\pi \alpha^{2}}{180 M^{4}}\left(-5 O_{1}+14 O_{2}\right)
$$

Wilson line

Physicists in Photonia have some classical (infinitely heavy) charged particles and can manipulate them.

$$
S_{\mathrm{int}}=e \int_{l} d x^{\mu} A_{\mu}(x)
$$

Feynman path integral: $\exp (i S)$ contains

$$
W_{l}=\exp \left(i e \int_{l} d x^{\mu} A_{\mu}(x)\right)
$$

The vacuum-to-vacuum transition amplitude is the vacuum average of the Wilson lines

Potential

Charges e and $-e$ stay at some distance \vec{r} during a large time T : the vacuum amplitude $e^{-i U(\vec{r}) T}$

Potential

Charges e and $-e$ stay at some distance \vec{r} during a large time T : the vacuum amplitude $e^{-i U(\vec{r}) T}$

Potential

Charges e and $-e$ stay at some distance \vec{r} during a large time T : the vacuum amplitude $e^{-i U(\vec{r}) T}$

Coulomb gauge

$$
\begin{aligned}
D^{00}(q) & =-\frac{1}{\vec{q}^{2}} \\
D^{i j}(q) & =\frac{1}{q^{2}+i 0}\left(\delta^{i j}-\frac{q^{i} q^{j}}{\vec{q}^{2}}\right)
\end{aligned}
$$

Wilson line

Wilson line

$$
=-i e^{2} T \int \frac{d^{d-1} \vec{q}}{(2 \pi)^{d-1}} D^{00}(0, \vec{q}) e^{i \vec{q} \cdot \vec{r}}
$$

Coulomb potential

$$
\begin{aligned}
& U(\vec{q})=e^{2} D^{00}(0, \vec{q})=-\frac{e^{2}}{\vec{q}^{2}} \\
& U(\vec{r})=-\frac{\alpha}{r}
\end{aligned}
$$

Coulomb potential

$$
\begin{aligned}
U(\vec{q}) & =e^{2} D^{00}(0, \vec{q})=-\frac{e^{2}}{\vec{q}^{2}} \\
U(\vec{r}) & =-\frac{\alpha}{r}
\end{aligned}
$$

No corrections

Contact interaction

In the presence of sources

$$
L_{c}=c\left(\partial^{\mu} F_{\lambda \mu}\right)\left(\partial_{\nu} F^{\lambda \nu}\right)
$$

Contact interaction

In the presence of sources

$$
\begin{aligned}
& L_{c}=c\left(\partial^{\mu} F_{\lambda \mu}\right)\left(\partial_{\nu} F^{\lambda \nu}\right) \\
& \xrightarrow[q]{\mu} \underset{q}{\sim} \underset{\sim}{\sim} \sim^{\nu}=2 i c q^{2}\left(q^{2} g_{\mu \nu}-q_{\mu} q_{\nu}\right)
\end{aligned}
$$

Contact interaction

In the presence of sources

$$
\begin{gathered}
L_{c}=c\left(\partial^{\mu} F_{\lambda \mu}\right)\left(\partial_{\nu} F^{\lambda \nu}\right) \\
\underset{\sim}{\sim} \sim_{q}^{\sim} \\
U_{c}(\vec{r})=2 c \delta(\vec{r})
\end{gathered}
$$

Qedland

$$
D^{00}(\vec{q})=-\frac{1}{\vec{q}^{2}} \frac{1}{1-\Pi\left(-\vec{q}^{2}\right)} \quad U(\vec{q})=e_{0}^{2} D^{00}(\vec{q})
$$

Qedland

$$
D^{00}(\vec{q})=-\frac{1}{\vec{q}^{2}} \frac{1}{1-\Pi\left(-\vec{q}^{2}\right)} \quad U(\vec{q})=e_{0}^{2} D^{00}(\vec{q})
$$

In macroscopic measurements $\vec{q} \rightarrow 0$

$$
U(\vec{q}) \rightarrow-\frac{e_{0}^{2}}{\vec{q}^{2}} \frac{1}{1-\Pi(0)}=-\frac{e_{\mathrm{os}}^{2}}{\vec{q}^{2}}
$$

On-shell renormalization scheme

$$
\begin{aligned}
& e_{0}=\left[Z_{\alpha}^{\mathrm{os}}\right]^{1 / 2} e_{\mathrm{os}} \quad A_{0}=\left[Z_{A}^{\mathrm{os}}\right]^{1 / 2} A_{\mathrm{os}} \\
& D^{00}(\vec{q})=Z_{A}^{\mathrm{os}} D_{\mathrm{os}}^{00}(\vec{q}) \quad D_{\mathrm{os}}^{00}(\vec{q}) \rightarrow-\frac{1}{\vec{q}^{2}} \\
& Z_{\alpha}^{\mathrm{os}}=\left[Z_{A}^{\mathrm{os}}\right]^{-1}=1-\Pi(0)
\end{aligned}
$$

$\overline{\mathrm{MS}}$ renormalization scheme

$$
\begin{aligned}
& e_{0}=Z_{\alpha}^{1 / 2}(\alpha(\mu)) e(\mu) \quad A_{0}=Z_{A}^{1 / 2}(\alpha(\mu)) A(\mu) \\
& Z_{i}(\alpha)=1+\frac{z_{1}}{\varepsilon} \frac{\alpha}{4 \pi}+\left(\frac{z_{22}}{\varepsilon^{2}}+\frac{z_{21}}{\varepsilon}\right)\left(\frac{\alpha}{4 \pi}\right)^{2}+\cdots \\
& D^{00}(\vec{q})=Z_{A} D^{00}(\vec{q} ; \mu) \quad D^{00}(\vec{q} ; \mu)=\text { finite } \\
& U(\vec{q})=e^{2}(\mu) D^{00}(\vec{q} ; \mu) Z_{\alpha} Z_{A}=\text { finite } \quad Z_{\alpha}=Z_{A}^{-1} \\
& \frac{\alpha(\mu)}{4 \pi}=\frac{e^{2}(\mu) \mu^{-2 \varepsilon}}{(4 \pi)^{d / 2}} e^{-\gamma \varepsilon}
\end{aligned}
$$

RG equations

$\frac{d \log \alpha(\mu)}{d \log \mu}=-2 \varepsilon-2 \beta(\alpha(\mu))$
$\beta(\alpha(\mu))=\frac{1}{2} \frac{d \log Z_{\alpha}(\alpha(\mu))}{d \log \mu} \quad \beta(\alpha)=\beta_{0} \frac{\alpha}{4 \pi}+\beta_{1}\left(\frac{\alpha}{4 \pi}\right)^{2}+\cdots$
$\frac{d A(\mu)}{d \log \mu}=-\frac{1}{2} \gamma_{A}(\alpha(\mu)) A(\mu)$
$\gamma_{A}=\frac{d \log Z_{A}(\alpha(\mu))}{d \log \mu}$
$\gamma_{A}(\alpha)=\gamma_{A 0} \frac{\alpha}{4 \pi}+\gamma_{A 1}\left(\frac{\alpha}{4 \pi}\right)^{2}+\cdots$
$\operatorname{QED} \beta(\alpha)=-\frac{1}{2} \gamma_{A}(\alpha)$

Charge decoupling

QPD

$$
e_{0}^{\prime}=e_{\mathrm{os}}^{\prime}=e^{\prime}(\mu)
$$

Charge decoupling

QPD

$$
e_{0}^{\prime}=e_{\mathrm{os}}^{\prime}=e^{\prime}(\mu)
$$

Macroscopically measured charge is the same in QED and QPD

$$
\begin{aligned}
& e_{\mathrm{os}}=e_{\mathrm{os}}^{\prime} \\
& e_{0}=\left[\zeta_{\alpha}^{0}\right]^{-1 / 2} e_{0}^{\prime} \quad \zeta_{\alpha}^{0}=\left[Z_{\alpha}^{\mathrm{os}}\right]^{-1} \\
& e(\mu)=\left[\zeta_{\alpha}(\mu)\right]^{-1 / 2} e^{\prime}(\mu) \quad \zeta_{\alpha}(\mu)=Z_{\alpha} \zeta_{\alpha}^{0}=\frac{Z_{\alpha}}{Z_{\alpha}^{\mathrm{os}}}
\end{aligned}
$$

1 loop

$$
\begin{aligned}
& \Pi\left(q^{2}\right)=-\frac{4}{3} \frac{e_{0}^{2} M_{0}^{-2 \varepsilon}}{(4 \pi)^{d / 2}} \Gamma(\varepsilon)\left(1-\frac{d-4}{10} \frac{q^{2}}{M_{0}^{2}}+\cdots\right)
\end{aligned}
$$

1 loop

$$
\begin{aligned}
& {\left[\zeta_{\alpha}(\mu)\right]^{-1}=\frac{Z_{\alpha}^{o s}}{Z_{\alpha}}=Z_{\alpha}^{-1}[1-\Pi(0)]=\text { finite }} \\
& Z_{\alpha}=1-\beta_{0} \frac{\alpha}{4 \pi \epsilon}+\cdots
\end{aligned}
$$

1 loop

$$
\begin{aligned}
& {\left[\zeta_{\alpha}(\mu)\right]^{-1}=\frac{Z_{\alpha}^{\text {os }}}{Z_{\alpha}}=Z_{\alpha}^{-1}[1-\Pi(0)]=\text { finite }} \\
& Z_{\alpha}=1-\beta_{0} \frac{\alpha}{4 \pi \epsilon}+\cdots \\
& \beta_{0}=-\frac{4}{3} \\
& {\left[\zeta_{\alpha}(\mu)\right]^{-1}=1+\frac{4}{3}\left[\left(\frac{\mu}{M}\right)^{2 \varepsilon} e^{\gamma \epsilon} \Gamma(1+\varepsilon)-1\right] \frac{\alpha(\mu)}{4 \pi \varepsilon}+\cdots}
\end{aligned}
$$

1 loop

$$
\begin{aligned}
& {\left[\zeta_{\alpha}(\mu)\right]^{-1}=\frac{Z_{\alpha}^{\text {os }}}{Z_{\alpha}}=Z_{\alpha}^{-1}[1-\Pi(0)]=\text { finite }} \\
& Z_{\alpha}=1-\beta_{0} \frac{\alpha}{4 \pi \epsilon}+\cdots \\
& \beta_{0}=-\frac{4}{3} \\
& {\left[\zeta_{\alpha}(\mu)\right]^{-1}=1+\frac{4}{3}\left[\left(\frac{\mu}{M}\right)^{2 \varepsilon} e^{\gamma \epsilon} \Gamma(1+\varepsilon)-1\right] \frac{\alpha(\mu)}{4 \pi \varepsilon}+\cdots} \\
& \quad \rightarrow 1+\frac{4}{3} \frac{\alpha(\mu)}{4 \pi} L \quad L=2 \log \frac{\mu}{M}
\end{aligned}
$$

Full theory and effective low-energy theory

QED

$$
L=\bar{\Psi}_{0}\left(i \not D_{0}-M_{0}\right) \Psi_{0}-\frac{1}{4} F_{0 \mu \nu} F_{0}^{\mu \nu}-\frac{1}{2 a_{0}}\left(\partial_{\mu} A_{0}^{\mu}\right)^{2}
$$

QPD

$$
L^{\prime}=-\frac{1}{4} F_{0 \mu \nu}^{\prime} F_{0}^{\prime \mu \nu}-\frac{1}{2 a_{0}^{\prime}}\left(\partial_{\mu} A_{0}^{\prime \mu}\right)^{2}+\frac{1}{M_{0}^{4}} \sum_{i} C_{i}^{0} O_{i}^{00}+\cdots
$$

Full theory and effective low-energy theory

QED

$$
L=\bar{\Psi}_{0}\left(i \not D_{0}-M_{0}\right) \Psi_{0}-\frac{1}{4} F_{0 \mu \nu} F_{0}^{\mu \nu}-\frac{1}{2 a_{0}}\left(\partial_{\mu} A_{0}^{\mu}\right)^{2}
$$

QPD

$$
L^{\prime}=-\frac{1}{4} F_{0 \mu \nu}^{\prime} F_{0}^{\prime \mu \nu}-\frac{1}{2 a_{0}^{\prime}}\left(\partial_{\mu} A_{0}^{\mu}\right)^{2}+\frac{1}{M_{0}^{4}} \sum_{i} C_{i}^{0} O_{i}^{\prime 0}+\cdots
$$

Bare decoupling

$$
\begin{aligned}
& A_{0}=\left[\zeta_{A}^{0}\right]^{-1 / 2} A_{0}^{\prime}+\cdots \\
& a_{0}=\left[\zeta_{A}^{0}\right]^{-1} a_{0}^{\prime} \quad e_{0}=\left[\zeta_{\alpha}^{0}\right]^{-1 / 2} e_{0}^{\prime}
\end{aligned}
$$

$\overline{\mathrm{MS}}$ renormalization scheme

QED

$$
\begin{aligned}
& A_{0}=Z_{A}^{1 / 2}(\alpha(\mu)) A(\mu) \\
& a_{0}=Z_{A}(\alpha(\mu)) a(\mu) \quad e_{0}=Z_{\alpha}^{1 / 2}(\alpha(\mu)) e(\mu)
\end{aligned}
$$

$\overline{\mathrm{MS}}$ renormalization scheme

QED

$$
\begin{aligned}
& A_{0}=Z_{A}^{1 / 2}(\alpha(\mu)) A(\mu) \\
& a_{0}=Z_{A}(\alpha(\mu)) a(\mu) \quad e_{0}=Z_{\alpha}^{1 / 2}(\alpha(\mu)) e(\mu) \\
& Z_{i}(\alpha)=1+\frac{z_{1}}{\varepsilon} \frac{\alpha}{4 \pi}+\left(\frac{z_{22}}{\varepsilon^{2}}+\frac{z_{21}}{\varepsilon}\right)\left(\frac{\alpha}{4 \pi}\right)^{2}+\cdots \\
& \frac{\alpha(\mu)}{4 \pi}=\mu^{-2 \varepsilon} \frac{e^{2}(\mu)}{(4 \pi)^{d / 2}} e^{-\gamma \varepsilon}
\end{aligned}
$$

MS renormalization scheme

QED

$$
\begin{aligned}
& A_{0}=Z_{A}^{1 / 2}(\alpha(\mu)) A(\mu) \\
& a_{0}=Z_{A}(\alpha(\mu)) a(\mu) \quad e_{0}=Z_{\alpha}^{1 / 2}(\alpha(\mu)) e(\mu) \\
& Z_{i}(\alpha)=1+\frac{z_{1}}{\varepsilon} \frac{\alpha}{4 \pi}+\left(\frac{z_{22}}{\varepsilon^{2}}+\frac{z_{21}}{\varepsilon}\right)\left(\frac{\alpha}{4 \pi}\right)^{2}+\cdots \\
& \frac{\alpha(\mu)}{4 \pi}=\mu^{-2 \varepsilon} \frac{e^{2}(\mu)}{(4 \pi)^{d / 2}} e^{-\gamma \varepsilon} \\
& D_{\mu \nu}(p)=\frac{1}{p^{2}\left[1-\Pi\left(p^{2}\right)\right]}\left(g_{\mu \nu}-\frac{p_{\mu} p_{\nu}}{p^{2}}\right)+a_{0} \frac{p_{\mu} p_{\nu}}{\left(p^{2}\right)^{2}} \\
& Z_{A}^{-1} D_{\mu \nu}(p)=D_{\mu \nu}(p ; \mu)
\end{aligned}
$$

MS renormalization scheme

QED

$$
\begin{aligned}
& A_{0}=Z_{A}^{1 / 2}(\alpha(\mu)) A(\mu) \\
& a_{0}=Z_{A}(\alpha(\mu)) a(\mu) \quad e_{0}=Z_{\alpha}^{1 / 2}(\alpha(\mu)) e(\mu) \\
& Z_{i}(\alpha)=1+\frac{z_{1}}{\varepsilon} \frac{\alpha}{4 \pi}+\left(\frac{z_{22}}{\varepsilon^{2}}+\frac{z_{21}}{\varepsilon}\right)\left(\frac{\alpha}{4 \pi}\right)^{2}+\cdots \\
& \frac{\alpha(\mu)}{4 \pi}=\mu^{-2 \varepsilon} \frac{e^{2}(\mu)}{(4 \pi)^{d / 2}} e^{-\gamma \varepsilon} \\
& D_{\mu \nu}(p)=\frac{1}{p^{2}\left[1-\Pi\left(p^{2}\right)\right]}\left(g_{\mu \nu}-\frac{p_{\mu} p_{\nu}}{p^{2}}\right)+a_{0} \frac{p_{\mu} p_{\nu}}{\left(p^{2}\right)^{2}} \\
& Z_{A}^{-1} D_{\mu \nu}(p)=D_{\mu \nu}(p ; \mu)
\end{aligned}
$$

QPD

$$
Z_{A}^{\prime}=1 \quad Z_{\alpha}^{\prime}=1
$$

$\overline{\mathrm{MS}}$ renormalization scheme

Renormalized decoupling

$$
\begin{aligned}
& A(\mu)=\zeta_{A}^{-1 / 2}(\mu) A^{\prime}(\mu) \\
& a(\mu)=\zeta_{A}^{-1}(\mu) a^{\prime}(\mu) \quad e(\mu)=\zeta_{\alpha}^{-1 / 2}(\mu) e^{\prime}(\mu)
\end{aligned}
$$

$\overline{\mathrm{MS}}$ renormalization scheme

Renormalized decoupling

$$
\begin{array}{lr}
A(\mu)=\zeta_{A}^{-1 / 2}(\mu) A^{\prime}(\mu) \\
a(\mu)=\zeta_{A}^{-1}(\mu) a^{\prime}(\mu) & e(\mu)=\zeta_{\alpha}^{-1 / 2}(\mu) e^{\prime}(\mu) \\
\zeta_{A}(\mu)=\frac{Z_{A}(\alpha(\mu))}{Z_{A}^{\prime}\left(\alpha^{\prime}(\mu)\right)} \zeta_{A}^{0} & \zeta_{\alpha}(\mu)=\frac{Z_{\alpha}(\alpha(\mu))}{Z_{\alpha}^{\prime}\left(\alpha^{\prime}(\mu)\right)} \zeta_{\alpha}^{0}
\end{array}
$$

$\overline{\mathrm{MS}}$ renormalization scheme

Renormalized decoupling

$$
\begin{array}{lr}
A(\mu)=\zeta_{A}^{-1 / 2}(\mu) A^{\prime}(\mu) \\
a(\mu)=\zeta_{A}^{-1}(\mu) a^{\prime}(\mu) & e(\mu)=\zeta_{\alpha}^{-1 / 2}(\mu) e^{\prime}(\mu) \\
\zeta_{A}(\mu)=\frac{Z_{A}(\alpha(\mu))}{Z_{A}^{\prime}\left(\alpha^{\prime}(\mu)\right)} \zeta_{A}^{0} & \zeta_{\alpha}(\mu)=\frac{Z_{\alpha}(\alpha(\mu))}{Z_{\alpha}^{\prime}\left(\alpha^{\prime}(\mu)\right)} \zeta_{\alpha}^{0}
\end{array}
$$

RG equations
$\frac{d \log \zeta_{A}(\mu)}{d \log \mu}=\gamma_{A}(\alpha(\mu))-\gamma_{A}^{\prime}\left(\alpha^{\prime}(\mu)\right)$
$\frac{d \log \zeta_{\alpha}(\mu)}{d \log \mu}=2\left[\beta(\alpha(\mu))-\beta^{\prime}\left(\alpha^{\prime}(\mu)\right)\right]$

On-shell renormalization scheme

QED

$$
\begin{aligned}
& A_{0}=\left[Z_{A}^{\mathrm{os}}\left(e_{0}\right)\right]^{1 / 2} A_{\mathrm{os}} \\
& a_{0}=Z_{A}^{\mathrm{os}}\left(e_{0}\right) a_{\mathrm{os}} \quad e_{0}=\left[Z_{\alpha}^{\mathrm{os}}\left(e_{0}\right)\right]^{1 / 2} e_{\mathrm{os}}
\end{aligned}
$$

On-shell renormalization scheme

QED

$$
\begin{aligned}
& A_{0}=\left[Z_{A}^{\mathrm{os}}\left(e_{0}\right)\right]^{1 / 2} A_{\mathrm{os}} \\
& a_{0}=Z_{A}^{\mathrm{os}}\left(e_{0}\right) a_{\mathrm{os}} \quad e_{0}=\left[Z_{\alpha}^{\mathrm{os}}\left(e_{0}\right)\right]^{1 / 2} e_{\mathrm{os}} \\
& \text { At } p \rightarrow 0 \quad D_{\perp}^{\mathrm{os}}\left(p^{2}\right) \rightarrow D_{\perp}^{0}\left(p^{2}\right)=\frac{1}{p^{2}} \\
& Z_{A}^{\mathrm{os}}\left(e_{0}\right)=\frac{1}{1-\Pi(0)}
\end{aligned}
$$

On-shell renormalization scheme

QED

$$
\begin{aligned}
& A_{0}=\left[Z_{A}^{\mathrm{os}}\left(e_{0}\right)\right]^{1 / 2} A_{\mathrm{os}} \\
& a_{0}=Z_{A}^{\mathrm{os}}\left(e_{0}\right) a_{\mathrm{os}} \quad e_{0}=\left[Z_{\alpha}^{\mathrm{os}}\left(e_{0}\right)\right]^{1 / 2} e_{\mathrm{os}} \\
& \text { At } p \rightarrow 0 \quad D_{\perp}^{\mathrm{os}}\left(p^{2}\right) \rightarrow D_{\perp}^{0}\left(p^{2}\right)=\frac{1}{p^{2}} \\
& Z_{A}^{\mathrm{os}}\left(e_{0}\right)=\frac{1}{1-\Pi(0)}
\end{aligned}
$$

QPD

$$
Z_{A}^{\text {os }}=1 \quad Z_{\alpha}^{\text {os }}=1
$$

On-shell renormalization scheme

QED

$$
\begin{aligned}
& A_{0}=\left[Z_{A}^{\mathrm{os}}\left(e_{0}\right)\right]^{1 / 2} A_{\mathrm{os}} \\
& a_{0}=Z_{A}^{\mathrm{os}}\left(e_{0}\right) a_{\mathrm{os}} \quad e_{0}=\left[Z_{\alpha}^{\mathrm{os}}\left(e_{0}\right)\right]^{1 / 2} e_{\mathrm{os}} \\
& \text { At } p \rightarrow 0 \quad D_{\perp}^{\mathrm{os}}\left(p^{2}\right) \rightarrow D_{\perp}^{0}\left(p^{2}\right)=\frac{1}{p^{2}} \\
& Z_{A}^{\mathrm{os}}\left(e_{0}\right)=\frac{1}{1-\Pi(0)}
\end{aligned}
$$

QPD

$$
Z_{A}^{\text {os }}=1 \quad Z_{\alpha}^{\text {os }}=1
$$

Photon field decoupling

$$
\text { At } p^{2} \rightarrow 0, D_{\perp}^{\mathrm{os}}(p)=D_{\perp}^{\prime \text { os }}(p)=D_{\perp}^{0}(p)
$$

$$
A^{o s}=A^{\prime o s}
$$

$$
\zeta_{A}^{0}\left(e_{0}\right)=\frac{Z_{A}^{\operatorname{os}}\left(e_{0}^{\prime}\right)}{Z_{A}^{\text {os }}\left(e_{0}\right)}=1-\Pi(0)
$$

1 loop

$$
\zeta_{A}^{0}=\left[\zeta_{\alpha}^{0}\right]^{-1}=1+\frac{4}{3} \frac{e_{0}^{2} M_{0}^{-2 \varepsilon}}{(4 \pi)^{d / 2}} \Gamma(\varepsilon)
$$

1 loop

$$
\begin{aligned}
& \zeta_{A}^{0}=\left[\zeta_{\alpha}^{0}\right]^{-1}=1+\frac{4}{3} \frac{e_{0}^{2} M_{0}^{-2 \varepsilon}}{(4 \pi)^{d / 2}} \Gamma(\varepsilon) \\
& \quad=1+\frac{4}{3} \frac{\alpha(\mu)}{4 \pi \varepsilon} Z_{\alpha}(\alpha(\mu)) Z_{m}^{-2 \varepsilon}(\alpha(\mu))\left(\frac{\mu}{M}\right)^{2 \varepsilon} \Gamma(1+\varepsilon) e^{\gamma \varepsilon}
\end{aligned}
$$

1 loop

$$
\begin{aligned}
& \zeta_{A}^{0}=\left[\zeta_{\alpha}^{0}\right]^{-1}=1+\frac{4}{3} \frac{e_{0}^{2} M_{0}^{-2 \varepsilon}}{(4 \pi)^{d / 2}} \Gamma(\varepsilon) \\
& =1+\frac{4}{3} \frac{\alpha(\mu)}{4 \pi \varepsilon} Z_{\alpha}(\alpha(\mu)) Z_{m}^{-2 \varepsilon}(\alpha(\mu))\left(\frac{\mu}{M}\right)^{2 \varepsilon} \Gamma(1+\varepsilon) e^{\gamma \varepsilon} \\
& \zeta_{A}(\mu)=Z_{A} \zeta_{A}^{0}=\text { finite } \\
& Z_{A}(\alpha)=Z_{\alpha}^{-1}=1-\frac{4}{3} \frac{\alpha}{4 \pi \varepsilon}
\end{aligned}
$$

1 loop

$$
\begin{aligned}
& \zeta_{A}^{0}=\left[\zeta_{\alpha}^{0}\right]^{-1}=1+\frac{4}{3} \frac{e_{0}^{2} M_{0}^{-2 \varepsilon}}{(4 \pi)^{d / 2}} \Gamma(\varepsilon) \\
& =1+\frac{4}{3} \frac{\alpha(\mu)}{4 \pi \varepsilon} Z_{\alpha}(\alpha(\mu)) Z_{m}^{-2 \varepsilon}(\alpha(\mu))\left(\frac{\mu}{M}\right)^{2 \varepsilon} \Gamma(1+\varepsilon) e^{\gamma \varepsilon} \\
& \zeta_{A}(\mu)=Z_{A} \zeta_{A}^{0}=\text { finite } \\
& Z_{A}(\alpha)=Z_{\alpha}^{-1}=1-\frac{4}{3} \frac{\alpha}{4 \pi \varepsilon} \\
& \zeta_{A}(\mu)=\zeta_{\alpha}^{-1}=1+\frac{4}{3} \frac{\alpha(\mu)}{4 \pi} L
\end{aligned}
$$

Mass renormalization

$$
M_{0}=Z_{m}(\alpha(\mu)) M(\mu)=Z_{m}^{\mathrm{os}} M_{\mathrm{os}}
$$

Mass renormalization

$$
M_{0}=Z_{m}(\alpha(\mu)) M(\mu)=Z_{m}^{\mathrm{os}} M_{\mathrm{os}}
$$

On-shell

$$
M\left(n_{1}, n_{2}\right)=\frac{\Gamma\left(d-n_{1}-2 n_{2}\right) \Gamma\left(n_{1}+n_{2}-\frac{d}{2}\right)}{\Gamma\left(n_{1}\right) \Gamma\left(d-n_{1}-n_{2}\right)}
$$

Mass renormalization

$$
M_{0}=Z_{m}(\alpha(\mu)) M(\mu)=Z_{m}^{\mathrm{os}} M_{\mathrm{os}}
$$

On-shell

$$
\begin{gathered}
M\left(n_{1}, n_{2}\right)=\frac{\Gamma\left(d-n_{1}-2 n_{2}\right) \Gamma\left(n_{1}+n_{2}-\frac{d}{2}\right)}{\Gamma\left(n_{1}\right) \Gamma\left(d-n_{1}-n_{2}\right)} \\
Z_{m}^{\text {os }}=1-\frac{e_{0}^{2} M_{0}^{-2 \varepsilon}}{(4 \pi)^{d / 2}} \Gamma(\varepsilon) \frac{d-1}{d-3}+\cdots
\end{gathered}
$$

Mass renormalization

$$
M_{0}=Z_{m}(\alpha(\mu)) M(\mu)=Z_{m}^{\mathrm{os}} M_{\mathrm{os}}
$$

On-shell

$$
\begin{gathered}
M\left(n_{1}, n_{2}\right)=\frac{\Gamma\left(d-n_{1}-2 n_{2}\right) \Gamma\left(n_{1}+n_{2}-\frac{d}{2}\right)}{\Gamma\left(n_{1}\right) \Gamma\left(d-n_{1}-n_{2}\right)} \\
Z_{m}^{\text {os }}=1-\frac{e_{0}^{2} M_{0}^{-2 \varepsilon}}{(4 \pi)^{d / 2}} \Gamma(\varepsilon) \frac{d-1}{d-3}+\cdots
\end{gathered}
$$

$\overline{\mathrm{MS}}$
Both $M_{\text {os }}$ and $M(\mu)$ are finite at $\varepsilon \rightarrow 0$

$$
Z_{m}(\alpha)=1-3 \frac{\alpha}{4 \pi \varepsilon}+\cdots
$$

2 loops

2 loops

$\frac{\Gamma\left(\frac{d}{2}-n_{3}\right) \Gamma\left(n_{1}+n_{3}-\frac{d}{2}\right) \Gamma\left(n_{2}+n_{3}-\frac{d}{2}\right) \Gamma\left(n_{1}+n_{2}+n_{3}-d\right)}{\Gamma\left(\frac{d}{2}\right) \Gamma\left(n_{1}\right) \Gamma\left(n_{2}\right) \Gamma\left(n_{1}+n_{2}+2 n_{3}-d\right)}$
A. Vladimirov (1980)

2 loops

$$
\begin{aligned}
\zeta_{A}^{0}= & {\left[\zeta_{\alpha}^{0}\right]^{-1}=1-\Pi(0)=1+\frac{4}{3} \frac{e_{0}^{2} M_{0}^{-2 \varepsilon}}{(4 \pi)^{d / 2}} \Gamma(\varepsilon) } \\
& +\frac{2}{3} \frac{(d-4)\left(5 d^{2}-33 d+34\right)}{d(d-5)}\left(\frac{e_{0}^{2} M_{0}^{-2 \varepsilon}}{(4 \pi)^{d / 2}} \Gamma(\varepsilon)\right)^{2}
\end{aligned}
$$

2 loops

$$
\begin{aligned}
\zeta_{A}^{0}= & {\left[\zeta_{\alpha}^{0}\right]^{-1}=1-\Pi(0)=1+\frac{4}{3} \frac{e_{0}^{2} M_{0}^{-2 \varepsilon}}{(4 \pi)^{d / 2}} \Gamma(\varepsilon) } \\
& +\frac{2}{3} \frac{(d-4)\left(5 d^{2}-33 d+34\right)}{d(d-5)}\left(\frac{e_{0}^{2} M_{0}^{-2 \varepsilon}}{(4 \pi)^{d / 2}} \Gamma(\varepsilon)\right)^{2} \\
= & 1+\frac{4}{3} \frac{\alpha(\mu)}{4 \pi \varepsilon} e^{L \varepsilon}\left(1+\frac{\pi^{2}}{12} \varepsilon^{2}+\cdots\right) Z_{\alpha}(\alpha(\mu)) Z_{m}^{-2 \varepsilon}(\alpha(\mu)) \\
& -\varepsilon\left(6-\frac{13}{3} \varepsilon+\cdots\right)\left(\frac{\alpha(\mu)}{4 \pi \varepsilon}\right)^{2} e^{2 L \varepsilon} \\
& L=2 \log \frac{\mu}{M(\mu)}
\end{aligned}
$$

2 loops

$$
\begin{aligned}
\zeta_{A}^{0}= & {\left[\zeta_{\alpha}^{0}\right]^{-1}=1-\Pi(0)=1+\frac{4}{3} \frac{e_{0}^{2} M_{0}^{-2 \varepsilon}}{(4 \pi)^{d / 2}} \Gamma(\varepsilon) } \\
& +\frac{2}{3} \frac{(d-4)\left(5 d^{2}-33 d+34\right)}{d(d-5)}\left(\frac{e_{0}^{2} M_{0}^{-2 \varepsilon}}{(4 \pi)^{d / 2}} \Gamma(\varepsilon)\right)^{2} \\
= & 1+\frac{4}{3} \frac{\alpha(\mu)}{4 \pi \varepsilon} e^{L \varepsilon}\left(1+\frac{\pi^{2}}{12} \varepsilon^{2}+\cdots\right) Z_{\alpha}(\alpha(\mu)) Z_{m}^{-2 \varepsilon}(\alpha(\mu)) \\
& -\varepsilon\left(6-\frac{13}{3} \varepsilon+\cdots\right)\left(\frac{\alpha(\mu)}{4 \pi \varepsilon}\right)^{2} e^{2 L \varepsilon} \\
& L=2 \log \frac{\mu}{M(\mu)} \\
& Z_{\alpha}=Z_{A}^{-1}=1+\frac{4}{3} \frac{\alpha(\mu)}{4 \pi \varepsilon} \quad Z_{m}=1-3 \frac{\alpha(\mu)}{4 \pi \varepsilon}
\end{aligned}
$$

2 loops

$$
\begin{aligned}
& \zeta_{A}=Z_{A} \zeta_{A}^{0}=\text { finite } \\
& Z_{A}=Z_{\alpha}^{-1}=1-\frac{4}{3} \frac{\alpha(\mu)}{4 \pi \varepsilon}-2 \varepsilon\left(\frac{\alpha(\mu)}{4 \pi \varepsilon}\right)^{2}
\end{aligned}
$$

2 loops

$$
\begin{aligned}
\zeta_{A}= & Z_{A} S_{A}^{0}=\text { finite } \\
Z_{A}= & Z_{\alpha}^{-1}=1-\frac{4}{3} \frac{\alpha(\mu)}{4 \pi \varepsilon}-2 \varepsilon\left(\frac{\alpha(\mu)}{4 \pi \varepsilon}\right)^{2} \\
\zeta_{A}(\mu) & =\zeta_{\alpha}^{-1}(\mu)=1+\frac{4}{3}\left[L+\left(\frac{L^{2}}{2}+\frac{\pi^{2}}{12}\right) \varepsilon\right] \frac{\alpha(\mu)}{4 \pi} \\
& +\left(-4 L+\frac{13}{3}\right)\left(\frac{\alpha(\mu)}{4 \pi}\right)^{2}
\end{aligned}
$$

2 loops

$\zeta_{A}=Z_{A} \zeta_{A}^{0}=$ finite
$Z_{A}=Z_{\alpha}^{-1}=1-\frac{4}{3} \frac{\alpha(\mu)}{4 \pi \varepsilon}-2 \varepsilon\left(\frac{\alpha(\mu)}{4 \pi \varepsilon}\right)^{2}$
$\zeta_{A}(\mu)=\zeta_{\alpha}^{-1}(\mu)=1+\frac{4}{3}\left[L+\left(\frac{L^{2}}{2}+\frac{\pi^{2}}{12}\right) \varepsilon\right] \frac{\alpha(\mu)}{4 \pi}$

$$
+\left(-4 L+\frac{13}{3}\right)\left(\frac{\alpha(\mu)}{4 \pi}\right)^{2}
$$

Define $M(\bar{M})=\bar{M}$, then $L=0$
$\zeta_{A}(\bar{M})=\zeta_{\alpha}^{-1}(\bar{M})=1+\frac{\pi^{2}}{9} \varepsilon \frac{\alpha(\bar{M})}{4 \pi}+\frac{13}{3}\left(\frac{\alpha(\bar{M})}{4 \pi}\right)^{2}$

2 loops

Alternatively use $M_{\text {os }}$

$$
\begin{aligned}
& \frac{M(\mu)}{M_{\mathrm{os}}}=1-6\left(\log \frac{\mu}{M_{\mathrm{os}}}+\frac{2}{3}\right) \frac{\alpha}{4 \pi} \quad L=8 \frac{\alpha}{4 \pi} \\
& \zeta_{A}\left(M_{\mathrm{os}}\right)=\zeta_{\alpha}^{-1}\left(M_{\mathrm{os}}\right)=1+\frac{\pi^{2}}{9} \varepsilon \frac{\alpha\left(M_{\mathrm{os}}\right)}{4 \pi}+15\left(\frac{\alpha\left(M_{\mathrm{os}}\right)}{4 \pi}\right)^{2}
\end{aligned}
$$

2 loops

Alternatively use $M_{\text {os }}$

$$
\begin{aligned}
& \frac{M(\mu)}{M_{\mathrm{os}}}=1-6\left(\log \frac{\mu}{M_{\mathrm{os}}}+\frac{2}{3}\right) \frac{\alpha}{4 \pi} \quad L=8 \frac{\alpha}{4 \pi} \\
& \zeta_{A}\left(M_{\mathrm{os}}\right)=\zeta_{\alpha}^{-1}\left(M_{\mathrm{os}}\right)=1+\frac{\pi^{2}}{9} \varepsilon \frac{\alpha\left(M_{\mathrm{os}}\right)}{4 \pi}+15\left(\frac{\alpha\left(M_{\mathrm{os}}\right)}{4 \pi}\right)^{2}
\end{aligned}
$$

For any $\mu=M(1+\mathcal{O}(\alpha)), \zeta_{\alpha}=1+\mathcal{O}(\varepsilon) \alpha+\mathcal{O}\left(\alpha^{2}\right)$

Qedland

Physicists in Qedland suspect that QED is also a low-energy effective theory. They are right: muons exist (let's suppose that pions don't exist). Two ways to search for new physics:

- increase the energy of $e^{+} e^{-}$colliders to produce pairs of new particles
- performing high-precision experiments at low energies

Qedland

Physicists in Qedland suspect that QED is also a low-energy effective theory. They are right: muons exist (let's suppose that pions don't exist). Two ways to search for new physics:

- increase the energy of $e^{+} e^{-}$colliders to produce pairs of new particles
- performing high-precision experiments at low energies We were lucky: the scale of new physics in QED is $M \gg m_{e}$, loops of heavy particles also suppressed by α^{n}. μ_{e} agrees with QED without non-renormalizable corrections to a good precision. Physicists expected the same for proton. No luck here.

Power counting

$$
\lambda \sim \frac{p_{i}}{M}
$$

$p \sim \lambda, x \sim 1 / \lambda, \partial \sim \lambda$

Power counting

$$
\lambda \sim \frac{p_{i}}{M}
$$

$p \sim \lambda, x \sim 1 / \lambda, \partial \sim \lambda$
Soft photon
$<0\left|T\left\{A_{\mu}(x) A_{\nu}(0)\right\}\right| 0>\sim \int \frac{d^{4} p}{(2 \pi)^{4}} e^{-i p \cdot x} \frac{1}{p^{2}}\left[g_{\mu \nu}-(1-a) \frac{p_{\mu} p_{\nu}}{p^{2}}\right]$
$A \sim \lambda, D_{\mu} \sim \lambda$

Power counting

$$
\lambda \sim \frac{p_{i}}{M}
$$

$p \sim \lambda, x \sim 1 / \lambda, \partial \sim \lambda$
Soft photon
$<0\left|T\left\{A_{\mu}(x) A_{\nu}(0)\right\}\right| 0>\sim \int \frac{d^{4} p}{(2 \pi)^{4}} e^{-i p \cdot x} \frac{1}{p^{2}}\left[g_{\mu \nu}-(1-a) \frac{p_{\mu} p_{\nu}}{p^{2}}\right]$
$A \sim \lambda, D_{\mu} \sim \lambda$
Soft electron

$$
<0|T\{\psi(x) \bar{\psi}(0)\}| 0>\sim \int \frac{d^{4} p}{(2 \pi)^{4}} e^{-i p \cdot x} \frac{1}{\not p-m}
$$

$\psi \sim \lambda^{3 / 2}$

Power counting

$$
\lambda \sim \frac{p_{i}}{M}
$$

$p \sim \lambda, x \sim 1 / \lambda, \partial \sim \lambda$
Soft photon
$<0\left|T\left\{A_{\mu}(x) A_{\nu}(0)\right\}\right| 0>\sim \int \frac{d^{4} p}{(2 \pi)^{4}} e^{-i p \cdot x} \frac{1}{p^{2}}\left[g_{\mu \nu}-(1-a) \frac{p_{\mu} p_{\nu}}{p^{2}}\right]$
$A \sim \lambda, D_{\mu} \sim \lambda$
Soft electron

$$
<0|T\{\psi(x) \bar{\psi}(0)\}| 0>\sim \int \frac{d^{4} p}{(2 \pi)^{4}} e^{-i p \cdot x} \frac{1}{\not p-m}
$$

$\psi \sim \lambda^{3 / 2}$
Lagrangian: $F_{\mu \nu} F^{\mu \nu} \sim \lambda^{4}, \bar{\psi} i \not D \psi \sim \lambda^{4}$
Action: ~ 1
Corrections to the Lagrangian $\sim \lambda^{6}$, to the action $\sim \lambda^{2}$,

We can add higher-dimensional contributions to the Lagrangian, with further unknown coefficients. To any finite order in $1 / M$, the number of such coefficients is finite, and the theory has predictive power.

We can add higher-dimensional contributions to the Lagrangian, with further unknown coefficients. To any finite order in $1 / M$, the number of such coefficients is finite, and the theory has predictive power. For example, if we want to work at the order $1 / M^{4}$, then either a single $1 / M^{4}$ (dimension 8) vertex or two $1 / M^{2}$ ones (dimension 6) can occur in a diagram. UV divergences which appear in diagrams with two dimension 6 vertices are compensated by dimension 8 counterterms. So, the theory can be renormalized.

We can add higher-dimensional contributions to the Lagrangian, with further unknown coefficients. To any finite order in $1 / M$, the number of such coefficients is finite, and the theory has predictive power.
For example, if we want to work at the order $1 / M^{4}$, then either a single $1 / M^{4}$ (dimension 8) vertex or two $1 / M^{2}$ ones (dimension 6) can occur in a diagram. UV divergences which appear in diagrams with two dimension 6 vertices are compensated by dimension 8 counterterms. So, the theory can be renormalized.
The usual arguments about non-renormalizability are based on considering diagrams with arbitrarily many vertices of nonrenormalizable interactions (operators of dimensions $>4)$; this leads to infinitely many free parameters in the theory.

- QED: effects of decoupling of muon loops are tiny; pion pairs become important at about the same energies as muon pairs
- QCD: decoupling of heavy flavours is fundamental and omnipresent; everybody using QCD with $n_{f}<6$ uses an effective field theory (even if he does not know that he speaks prose)
- QED: effects of decoupling of muon loops are tiny; pion pairs become important at about the same energies as muon pairs
- QCD: decoupling of heavy flavours is fundamental and omnipresent; everybody using QCD with $n_{f}<6$ uses an effective field theory (even if he does not know that he speaks prose)
Full theory QCD with n_{l} massless flavours and 1 flavour of mass M

Effective theory QCD with n_{l} massless flavours

QCD decoupling

$$
\begin{gathered}
\alpha_{s}^{\left(n_{+}+1\right)}(\mu)=\zeta_{\alpha}^{-1}(\mu) \alpha_{s}^{\left(n_{l}\right)}(\mu) \\
\zeta_{\alpha}(\bar{M})=1-\left(\frac{13}{3} C_{F}-\frac{32}{9} C_{A}\right) T_{F}\left(\frac{\alpha_{s}(\bar{M})}{4 \pi}\right)^{2}+\cdots
\end{gathered}
$$

RG equation

$$
\frac{d \log \zeta_{\alpha}(\mu)}{d \log \mu}-2 \beta^{\left(n_{l}+1\right)}\left(\alpha_{s}^{\left(n_{l}+1\right)}(\mu)\right)+2 \beta^{\left(n_{l}\right)}\left(\alpha_{s}^{\left(n_{l}\right)}(\mu)\right)=0
$$

QCD

