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We don’t know all physics up to infinitely high energies
(or down to infinitely small distances)
All our theories are effective low-energy (or large-distance)
theories

(except The Theory of Everything if such a thing
exists)
There is a high energy scale M where an effective theory
breaks down. Its Lagrangian describes light particles
(mi �M) and their interactions at pi �M (distances
� 1/M); physics at distances . 1/M produces local
interactions of these light fields.
The Lagrangian contains all possible operators (allowed by
symmetries). Coefficients of operators of dimension n+ 4
contain 1/Mn. If M is much larger than energies we are
interested in, we can retain only renormalizable terms
(dimension 4), and, maybe, a power correction or two.
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EFT in classical mechanics

I Slow motion – characteristic time 1/ω

I Fast motion – characteristic time 1/Ω

Ω� ω

Average over fast oscillations
Effective Lagrangian describes slow motion
Poincaré, Krylov, Bogoliubov, Kapitza, . . .
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Photonia

Here physicists have high-intensity sources and excellent
detectors of low-energy photons, but they have no electrons
and don’t know that such a particle exists.

We indignantly refuse to discuss the question “What the
experimantalists and their apparata are made of?” as
irrelevant.
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Quantum PhotoDynamics (QPD)

L = −1

4
FµνF

µν

+ c1O1 + c2O2

O1 = (FµνF
µν)2 O2 = FµνF

ναFαβF
βµ c1,2 ∼ 1/M4
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Photonia

We work at the order 1/M4, there can be only 1 4-photon
vertex

No corrections to the photon propagator

= 0

No renormalization of the photon field

No corrections to the 4-photon vertex
No renormalization of the operators O1,2 and the couplings
c1,2



Qedland

Physicists in the neighboring Qedland are more advanced:
in addition to photons, they know electrons and positrons,
and investigate their interactions at energies E ∼M . They
have constructed a nice theory, QED, which describes their
experimental results.

They don’t know muons, but this is another story.

They understand that QPD (constructed in Photonia) is
just a low-energy approximation to QED.
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Matching
c1,2 can be found by matching S-matrix elements
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k
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∫
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= Md−2nV (n)

D = M2 − k2 − i0

V (n) =
Γ
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n− d
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)
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(−5O1 + 14O2)
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Wilson line

Physicists in Photonia have some classical (infinitely heavy)
charged particles and can manipulate them.

Sint = e

∫
l

dxµAµ(x)

Feynman path integral: exp(iS) contains

Wl = exp

(
ie

∫
l

dxµAµ(x)

)
The vacuum-to-vacuum transition amplitude is the vacuum
average of the Wilson lines



Potential
Charges e and −e stay at some distance ~r during a large
time T : the vacuum amplitude e−iU(~r)T

T � r

0 ~r

T

= e−iU(~r )T

Coulomb gauge

D00(q) = − 1

~q 2

Dij(q) =
1

q2 + i0

(
δij − qiqj

~q 2

)
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Wilson line
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T
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= −i e2 T
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Coulomb potential

U(~q ) = e2D00(0, ~q ) = − e
2

~q 2

U(~r ) = −α
r

No corrections
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Contact interaction

In the presence of sources

Lc = c (∂µFλµ)
(
∂νF

λν
)

q q

µ ν
= 2icq2

(
q2gµν − qµqν

)
Uc(~r ) = 2cδ(~r )
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Qedland

D00(~q) = − 1

~q2

1

1− Π(−~q2)
U(~q) = e2

0D
00(~q)

In macroscopic measurements ~q → 0

U(~q)→ −e
2
0

~q2

1

1− Π(0)
= −e

2
os

~q2

On-shell renormalization scheme

e0 = [Zos
α ]1/2 eos A0 = [Zos

A ]1/2Aos

D00(~q) = Zos
AD

00
os (~q) D00

os (~q)→ − 1

~q2

Zos
α = [Zos

A ]−1 = 1− Π(0)



Qedland

D00(~q) = − 1

~q2

1

1− Π(−~q2)
U(~q) = e2

0D
00(~q)

In macroscopic measurements ~q → 0

U(~q)→ −e
2
0

~q2

1

1− Π(0)
= −e

2
os

~q2

On-shell renormalization scheme

e0 = [Zos
α ]1/2 eos A0 = [Zos

A ]1/2Aos

D00(~q) = Zos
AD

00
os (~q) D00

os (~q)→ − 1

~q2

Zos
α = [Zos

A ]−1 = 1− Π(0)



MS renormalization scheme

e0 = Z1/2
α (α(µ))e(µ) A0 = Z

1/2
A (α(µ))A(µ)

Zi(α) = 1 +
z1

ε

α

4π
+
(z22

ε2
+
z21

ε

)( α
4π

)2

+ · · ·

D00(~q) = ZAD
00(~q;µ) D00(~q;µ) = finite

U(~q) = e2(µ)D00(~q;µ)ZαZA = finite Zα = Z−1
A

α(µ)

4π
=
e2(µ)µ−2ε

(4π)d/2
e−γε



RG equations

d logα(µ)

d log µ
= −2ε− 2β(α(µ))

β(α(µ)) =
1

2

d logZα(α(µ))

d log µ
β(α) = β0

α

4π
+ β1

( α
4π

)2

+ · · ·

dA(µ)

d log µ
= −1

2
γA(α(µ))A(µ)

γA =
d logZA(α(µ))

d log µ
γA(α) = γA0

α

4π
+ γA1

( α
4π

)2

+ · · ·

QED β(α) = −1

2
γA(α)



Charge decoupling

QPD
e′0 = e′os = e′(µ)

Macroscopically measured charge is the same in QED and
QPD

eos = e′os

e0 =
[
ζ0
α

]−1/2
e′0 ζ0

α = [Zos
α ]−1

e(µ) = [ζα(µ)]−1/2 e′(µ) ζα(µ) = Zαζ
0
α =

Zα
Zos
α
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1 loop

k

k + q

µ ν
= i
(
q2gµν − qµqν

)
Π(q2)

Π(q2) = −4

3

e2
0M

−2ε
0

(4π)d/2
Γ(ε)

(
1− d− 4

10

q2

M2
0

+ · · ·
)



1 loop
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α

4πε
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3

[( µ
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)2ε
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Full theory and effective low-energy theory

QED

L = Ψ̄0 (i /D0 −M0) Ψ0 −
1

4
F0µνF

µν
0 −

1

2a0

(∂µA
µ
0)2

QPD

L′ = −1

4
F ′0µνF

′µν
0 − 1

2a′0

(
∂µA

′µ
0

)2
+

1

M4
0

∑
i

C0
i O
′0
i + · · ·

Bare decoupling

A0 =
[
ζ0
A

]−1/2
A′0 + · · ·

a0 =
[
ζ0
A

]−1
a′0 e0 =
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ζ0
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MS renormalization scheme

QED

A0 = Z
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pµpν
p2
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(p2)2
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QPD
Z ′A = 1 Z ′α = 1
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MS renormalization scheme

Renormalized decoupling

A(µ) = ζ
−1/2
A (µ)A′(µ)

a(µ) = ζ−1
A (µ)a′(µ) e(µ) = ζ−1/2

α (µ)e′(µ)

ζA(µ) =
ZA(α(µ))

Z ′A(α′(µ))
ζ0
A ζα(µ) =

Zα(α(µ))

Z ′α(α′(µ))
ζ0
α

RG equations

d log ζA(µ)

d log µ
= γA(α(µ))− γ′A(α′(µ))

d log ζα(µ)

d log µ
= 2 [β(α(µ))− β′(α′(µ))]
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On-shell renormalization scheme
QED

A0 = [Zos
A (e0)]1/2Aos

a0 = Zos
A (e0) aos e0 = [Zos

α (e0)]1/2 eos

At p→ 0 Dos
⊥ (p2)→ D0

⊥(p2) =
1

p2

Zos
A (e0) =

1

1− Π(0)

QPD
Z ′os
A = 1 Z ′os

α = 1

Photon field decoupling
At p2 → 0, Dos

⊥ (p) = D′os
⊥ (p) = D0

⊥(p)

Aos = A′os

ζ0
A(e0) =

Z ′os
A (e′0)

Zos
A (e0)

= 1− Π(0)
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Mass renormalization

M0 = Zm(α(µ))M(µ) = Zos
mMos

On-shell

M(n1, n2) =
Γ(d− n1 − 2n2)Γ

(
n1 + n2 − d

2

)
Γ(n1)Γ(d− n1 − n2)

Zos
m = 1− e2

0M
−2ε
0

(4π)d/2
Γ(ε)

d− 1

d− 3
+ · · ·

MS
Both Mos and M(µ) are finite at ε→ 0

Zm(α) = 1− 3
α

4πε
+ · · ·
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2 loops
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A. Vladimirov (1980)
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For any µ = M(1 +O(α)), ζα = 1 +O(ε)α +O(α2)
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Qedland

Physicists in Qedland suspect that QED is also a
low-energy effective theory. They are right: muons exist
(let’s suppose that pions don’t exist). Two ways to search
for new physics:

I increase the energy of e+e− colliders to produce pairs
of new particles

I performing high-precision experiments at low energies

We were lucky: the scale of new physics in QED is
M � me, loops of heavy particles also suppressed by αn.
µe agrees with QED without non-renormalizable
corrections to a good precision. Physicists expected the
same for proton. No luck here.
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Power counting

λ ∼ pi
M

p ∼ λ, x ∼ 1/λ, ∂ ∼ λ

Soft photon

<0|T {Aµ(x)Aν(0)} |0> ∼
∫

d4p

(2π)4
e−ip·x

1

p2

[
gµν − (1− a)

pµpν
p2

]
A ∼ λ, Dµ ∼ λ
Soft electron

<0|T
{
ψ(x)ψ̄(0)

}
|0> ∼

∫
d4p

(2π)4
e−ip·x

1

/p−m
,

ψ ∼ λ3/2

Lagrangian: FµνF
µν ∼ λ4, ψ̄i /Dψ ∼ λ4

Action: ∼ 1
Corrections to the Lagrangian ∼ λ6, to the action ∼ λ2
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We can add higher-dimensional contributions to the
Lagrangian, with further unknown coefficients. To any
finite order in 1/M , the number of such coefficients is finite,
and the theory has predictive power.

For example, if we want to work at the order 1/M4, then
either a single 1/M4 (dimension 8) vertex or two 1/M2 ones
(dimension 6) can occur in a diagram. UV divergences
which appear in diagrams with two dimension 6 vertices are
compensated by dimension 8 counterterms. So, the theory
can be renormalized.
The usual arguments about non-renormalizability are based
on considering diagrams with arbitrarily many vertices of
nonrenormalizable interactions (operators of dimensions
> 4); this leads to infinitely many free parameters in the
theory.
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QCD

I QED: effects of decoupling of muon loops are tiny;
pion pairs become important at about the same
energies as muon pairs

I QCD: decoupling of heavy flavours is fundamental and
omnipresent; everybody using QCD with nf < 6 uses
an effective field theory (even if he does not know that
he speaks prose)

Full theory QCD with nl massless flavours
and 1 flavour of mass M

Effective theory QCD with nl massless flavours
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QCD decoupling

α(nl+1)
s (µ) = ζ−1

α (µ)α(nl)
s (µ)

ζα(M̄) = 1−
(

13

3
CF −

32

9
CA

)
TF

(
αs(M̄)

4π

)2

+ · · ·

RG equation

d log ζα(µ)

d log µ
− 2β(nl+1)(α(nl+1)

s (µ)) + 2β(nl)(α(nl)
s (µ)) = 0



QCD

Mos
bMos

b − 0.5GeV Mos
b + 0.5GeV

0.21

0.215

0.22

0.225
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