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All our theories are effective low-energy (or large-distance)
theories (except The Theory of Everything if such a thing
exists)

There is a high energy scale M where an effective theory
breaks down. Its Lagrangian describes light particles

(m; < M) and their interactions at p; < M (distances

> 1/M); physics at distances < 1/M produces local
interactions of these light fields.

The Lagrangian contains all possible operators (allowed by
symmetries). Coefficients of operators of dimension n + 4
contain 1/M™. If M is much larger than energies we are
interested in, we can retain only renormalizable terms
(dimension 4), and, maybe, a power correction or two.
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» Slow motion — characteristic time 1/w

» Fast motion — characteristic time 1/
Q>w

Average over fast oscillations
Effective Lagrangian describes slow motion
Poincaré, Krylov, Bogoliubov, Kapitza, ...
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Kapitza pendulum

Yo ¢
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Photonia

Here physicists have high-intensity sources and excellent
detectors of low-energy photons, but they have no electrons
and don’t know that such a particle exists.

We indignantly refuse to discuss the question “What the
experimantalists and their apparata are made of?” as
irrelevant.
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Quantum PhotoDynamics (QPD)

1
L = —ZF#VF'MV + 0101 + 0202
O1 = (F,,F"™)* Oy = F,,F"*F,sF

6172 ~ 1/M4



Photonia

We work at the order 1/M*, there can be only 1 4-photon
vertex

No corrections to the photon propagator

No renormalization of the photon field

No corrections to the 4-photon vertex
No renormalization of the operators O 5 and the couplings
C1,2
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Qedland

Physicists in the neighboring Qedland are more advanced:

in addition to photons, they know electrons and positrons,
and investigate their interactions at energies £/ ~ M. They
have constructed a nice theory, QED, which describes their
experimental results.

They don’t know muons, but this is another story.

They understand that QPD (constructed in Photonia) is
just a low-energy approximation to QED.
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c12 can be found by matching S-matrix elements
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Matching

M2 (d—4)(d - 6)
THimk2viV2 0 r
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Heisengerg-Euler Lagrangian
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Wilson line

Physicists in Photonia have some classical (infinitely heavy)
charged particles and can manipulate them.

Sint = e/dw"AM(x)
I
Feynman path integral: exp(iS) contains

W= exp (ie [dnt (o))

The vacuum-to-vacuum transition amplitude is the vacuum
average of the Wilson lines
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Potential

Charges e and —e stay at some distance 7 during a large

time 7 the vacuum amplitude e~VM7
T
T>r \ M o iUT
0 r
Coulomb gauge
1
DOO(Q) = —?

g 1 g
DY = oY —
D= ( g’ )
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Wilson line
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Coulomb potential



Coulomb potential

- 2100/ = €
U(q) =e"D™(0 )—*?
«
Ur)=——
,
7
4 [ ) --n
/ AN
| - N ox W N M
\ /7 N\
\ o A | ——
N

No corrections
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Contact interaction

In the presence of sources

L. = c(0"Fy,) (0,F™)

H v cL2 (2
'\/V\q/vv.W\q/\A/\ = 22@(] (q I — q#qy)

U (7) = 2¢6(7)
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Qedland

1 1
DOO - _ = U — 2D00
@ == V@=40"@
In macroscopic measurements ¢ — 0
e2 1 e2
U(q) = —— ==
D= 2100~ ¢

On-shell renormalization scheme
€0 = [228]1/2 €os Ayg = [233]1/2 Aos
DY(q) = Z¥DX(Q)  De(q) — —

ze =231 =1-1(0)



MS renormalization scheme

co = ZY(a(m)e(p) Ao = ZY*(a(u) A(p)
Cp Al (e
Zife) =1+ 847T+<£2 + € ) (47r> +
D®(q) = ZaD"(g;pr)  D™(q; p) = finite
U(Q) = *(u)D"(§: 1) ZoZa = finite  Z, = Z;*
alp) _ewp™ .
A (47)d/2




RG equations

dlog ov(p)
)

Blali) = ;B

) el A
_ dlog Zs(a(p))

(@) = a0~ +
dlog 1 YA = Y40 . YAl

QED 5(a) = ~374(0)



Charge decoupling
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Charge decoupling

QPD

€y = €os = €' (11)
Macroscopically measured charge is the same in QED and
QPD




1 loop

k4 q
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1 loop

Calp)] ™! = ZOS — Z71[1 — TI(0)] = finite

—1— B — 4 -
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Full theory and effective low-energy theory
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Full theory and effective low-energy theory

QED
= . 1 % 1 w2
L = Vo (iDo — Mo) Wo — 7 Fopu Fi™ — 5— (0uA)
4 2&0
QPD
1 0% / 0,0
L' == Fo B — (a AL)? Zc oP +

Bare decoupling

= [¢3) 7 4+
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MS renormalization scheme
QED
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MS renormalization scheme
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MS renormalization scheme

QED

Ao = Z3{*(a(u) Ap)
ap = Za(a(p)a(u)  eo = Z3*(a(p)) e(n)

2
Zl) =1+ 22+ (F+2) (5) +

M —2e 62</“L) ef'ye

QPD



MS renormalization scheme

Renormalized decoupling
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MS renormalization scheme

Renormalized decoupling

Ap) = P () A (1)
a(p) = <A1<u>a< ) elw) = G ()e (u)
)
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MS renormalization scheme

Renormalized decoupling
Alp) = G4 () A ()
a(u) = Ci'(wa' (1) elp) = (5 1/2( )e' (1)
Cal) = 228D o () = Zelali)) o

Z,((n) 2
RG equations
OB () — e ()

d log Ga(p) _
d log



On-shell renormalization scheme
QED
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On-shell renormalization scheme
QED
Ao = [ZXS(GO)]UZ Aos

ag = Zzs(eo) Qs €y = [ng(eo)]l/Q €os
1
Atp—=0  DY(p") = DI(p*) =
p

1

Z3(eo) = T=Ti(0)



On-shell renormalization scheme
QED

Ao = [ZXS(GO)]UZ Aos

ag = Zzs(eo) Qs €y = [ng(eo)]l/Q €os
1
Atp—0  DY(p°) = DI (p°) = 2
Z3(e0) =
A1) = T7T(0)

QPD
Zlos — 1 Z;[os — 1



On-shell renormalization scheme
QED

Ao = [ZBXS(eO)]l/Z Aos

ap = Z,?ls(GO) Qos €0 = [ZZS(GO)FQ €os
1
Atp—0  DP@*) — DI(p?) = 2
ZOS( ) 1
€) = ————
AV T1(0)

QPD
Zlos — 1 Z;[os — 1

Photon field decoupling
At p* =0, DF(p) = D'*(p) = D (p)

AOS — A/OS

7@
A0 = Zlen

—1-11(0)



1 loop
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1 loop
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1 loop
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1 loop

4 2M—25
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Mass renormalization
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Mass renormalization

My = Zun{a)) M (1) = Z2 Mo
On-shell

Pl

M(nh n2) -

F(d — N1 — QHQ)F (TLl + ng — d)

['(ny)T'(d —ny — noy)

e2My*  d—1
708 _ 1 _ 0-"0 .
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Mass renormalization

Mo = Zp(a(p)) M (p) = Z7 Mos

On-shell
I'(d — — 2n9)T —d
M(ny,ng) = (@ =m = 2na)T' (1 + 2 = 5)
F(nl)f‘(d —niy — ’I’Lg)
e2 M d—1
708 _ 1 _ 0-"0 .
m umiE g3t

Both My and M (u) are finite at ¢ — 0

Zn(a)=1-3-" 4 ...



2 loops



ks

F(El—ng)F(n1+n3—g)F(n2+n3—g)F(nl—i-ng—i-ng—d)

: ' (2) D(n)T(n2)T'(n1 4 no + 2n3 — d)

A. Vladimirov (1980)



2 loops
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2 loops
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2 loops
_ 4 2M—25
G=[¢) " =1-10) =1+ ge(gmﬁr(s)
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2 loops

Ca = ZaC% = finite

4 ) a(p) 2
1
Ja=J7""= 2e
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2 loops

g:@@:mm

347r5
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2 loops

Ca = Z4CY = finite

Z :Z_lz]_
4 “ 347r5 (

7-‘- )
2 2

D2

G =G =1+ [H (

() (5)

Define M (M) = M, then L =0




2 loops

Alternatively use Mg

M(:u)_ H 2 o L«
—MOS _1_6(10gM_OS+§ E L= E

[\
~~

o B 7 a(Mes) a(Mes) ’
CA(MOS) - Ca (MOS) =1+ 56 47 15 ( 4m )



2 loops

Alternatively use Mg

M(:u) H 2 o o
M, 6(OgM "3 )= St

4 4

Ca(Mos) = (1 (M) = 1 +%2 oMos) 45 (—O‘<M°S))

For any = M(1+ O(a)), (o =1+ O(e)a + O(a?)
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Physicists in Qedland suspect that QED is also a
low-energy effective theory. They are right: muons exist
(let’s suppose that pions don’t exist). Two ways to search
for new physics:
» increase the energy of eTe™ colliders to produce pairs
of new particles

» performing high-precision experiments at low energies



Qedland

Physicists in Qedland suspect that QED is also a
low-energy effective theory. They are right: muons exist
(let’s suppose that pions don’t exist). Two ways to search
for new physics:

» increase the energy of eTe™ colliders to produce pairs
of new particles

» performing high-precision experiments at low energies

We were lucky: the scale of new physics in QED is

M > m,, loops of heavy particles also suppressed by a™.
e agrees with QED without non-renormalizable
corrections to a good precision. Physicists expected the
same for proton. No luck here.
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Power counting

p~A T ~1/N 0~ A
Soft photon

<OT (A, 4,00} 0> ~

A~XN Dy~ A
Soft electron

d4p —ip-x 1 pupu
e’ P {g“"_ S

<O {020} 05 ~ [ Fhee L

¢ ~ )\3/2



Power counting

i
A M
p~N T~ 1/A 0~ A
Soft photon
d'p il Pup
T {A,(x)A, ~ e g (1= q)Pelr
OT (A @A 0> ~ [ S g, — (1 )
A~ A Dy~ A
Soft electron
- dp . 1
T ~ —ip-x
<O {ole)iO} 10> ~ [ e
¢ ~ )\3/2
Lagrangian: F,, F" ~ A\ iPy) ~ \*
Action: ~ 1

Corrections to the Lagrangian ~ A\, to the action ~ \?
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which appear in diagrams with two dimension 6 vertices are
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We can add higher-dimensional contributions to the
Lagrangian, with further unknown coefficients. To any
finite order in 1/M, the number of such coefficients is finite,
and the theory has predictive power.

For example, if we want to work at the order 1/M*, then
either a single 1/M* (dimension 8) vertex or two 1/M? ones
(dimension 6) can occur in a diagram. UV divergences
which appear in diagrams with two dimension 6 vertices are
compensated by dimension 8 counterterms. So, the theory
can be renormalized.

The usual arguments about non-renormalizability are based
on considering diagrams with arbitrarily many vertices of
nonrenormalizable interactions (operators of dimensions

> 4); this leads to infinitely many free parameters in the
theory.
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» QED: effects of decoupling of muon loops are tiny;
pion pairs become important at about the same
energies as muon pairs

» QCD: decoupling of heavy flavours is fundamental and
omnipresent; everybody using QCD with n; < 6 uses
an effective field theory (even if he does not know that
he speaks prose)



QCD

» QED: effects of decoupling of muon loops are tiny;
pion pairs become important at about the same
energies as muon pairs

» QCD: decoupling of heavy flavours is fundamental and
omnipresent; everybody using QCD with n; < 6 uses
an effective field theory (even if he does not know that
he speaks prose)

Full theory QCD with n; massless flavours
and 1 flavour of mass M

Effective theory QCD with n; massless flavours



QCD decoupling

agmﬂ)(u) _ Ql(ﬂ)a!”)(u)

2
an =1- (Roo- ey (420) 4

RG equation

dlog Ca (1)
dlog p

— 280 (" () + 260 (™) () = 0



QCD
0.225

0.22 -

0.215 1

0.21 . .
Mg — 0.5GeV M Mg+ 0.5GeV
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