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Photonia

Photonia has imported a single electron from Qedland, and
physicists are studying its interaction with soft photons
(both real and virtual)

The ground state (“vacuum”) — the electron at rest ε = 0

ε(~p ) =
~p 2

2M

The leading-order mass shell

ε(~p ) = 0

Velocity

~v =
∂ε(~p )

∂~p
=

~p

M
→ 0
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Lagrangian

L = h+i∂0h

equation of motion
i∂0h = 0

Charge −e
ε = −eA0

Equation of motion

iD0h = 0

Dµ = ∂µ − ieAµ

Lagrangian
L = h+iD0h

Not Lorentz-invariant
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Lagrangian

+ Lagrangian of the photon field

∂µF
µν = jν

j0 = −eh+h

The electron produces the Coulomb field



Spin symmetry
At the leading order in 1/M , the electron spin does not
interact with electromagnetic field
We can rotate it without affecting physics
In addition to the U(1) symmetry h→ eiαh,
also the SU(2) spin symmetry

h→ Uh

The electron magnetic moment ~µ = µ~σ
interacts with magnetic field: −~µ · ~B
By dimensionality µ ∼ e/M
(Bohr magneton e/(2M) up to radiative corrections)

Lm = − e

2M
h+ ~B · ~σh

Violates the SU(2) spin symmetry at the 1/M level
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Spin-flavour symmetry

nf flavours of heavy fermions

L =

nf∑
i=1

h+
i iD0hi

U(1)× SU(2nf ) symmetry
Broken at 1/Mi by kinetic energy and magnetic interaction

At the leading order in 1/M , not only the spin direction
but also its magnitude is irrelevant
We can, for example, switch the electron spin off:

L = ϕ∗iD0ϕ
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Superflavour symmetry

The scalar and the spinor fields together

L = ϕ∗iD0ϕ+ h+iD0h

U(1)× SU(3) symmetry

The superflavour SU(3) symmetry:

I ϕ→ e2iαϕ, h→ e−iαh

I SU(2) spin rorations

I

δ

(
ϕ
h

)
= i

(
0 ε+

ε 0

)(
ϕ
h

)
ε — an infinitesimal spinor

Broken at 1/M
We can consider, e. g., spins 1

2
and 1

SU(5) superflavour symmetry
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Feynman rules
Leading order in 1/M

L = ϕ∗0iD0ϕ0 −
1

4
F0µνF

µν
0 −

1

2a0

(∂µA
µ
0)2

The usual photon propagator

The momentum-space free electron propagator

p
= iS0(p) S0(p) =

1

p0 + i0

depends only on p0, not on ~p
(spin-1

2
field h0 — the unit 2× 2 spin matrix)

The coordinate-space propagator

0 x
= iS0(x) S0(x) = S0(x0)δ(~x ) S0(t) = −iθ(t)

Static electron does not move
Solving the equation

i∂0S0(x) = δ(x)
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Feynman rules

Vertex

µ

= ie0v
µ

vµ = (1,~0 )

The static field ϕ0 (or h0) describes only particles,
there are no antiparticles.
No loops formed by static-electron propagators.
The electron propagates only forward in time;
the product of θ functions for a loop vanishes.
In the momentum space: all poles of the propagators
are in the lower p0 half-plane;
closing the integration contour upwards, we get 0.
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Residual momentum

The full-theory energy M is the HEET zero level

E = M + ε

ε — the residual energy

P µ = Mvµ + pµ

I P µ — 4-momentum of some state (containing a single
electron) in the full theory

I pµ — its momentum in HEET (the residual
momentum)

vµ — 4-velocity of a reference frame in which the electron
always stays approximately at rest
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Reparametrization invariance

HEET is applicable if there exists such v that

pµ �M pµγi �M

This condition does not fix v uniquely: v → v + δv,
δv ∼ p/M .
Effective theories corresponding to different choices of v
must produce identical physical predictions:
reparametrization invariance.
Relations between quantities at different orders in 1/M .
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Relativistic notation

Lagrangian

L = ϕ∗0iv ·Dϕ0 + (light fields)

Free propagator

S0(p) =
1

p · v + i0

Mass shell
p · v = 0



Spin 1
2

4-component spinor field

/vhv = hv

Lagrangian

L = h̄v0iv ·Dhv0 + (light fields)

Propagator

S0(p) =
1 + /v

2

1

p · v + i0

Vertex ie0v
µ



Qedland

S0(Mv + p) =
M +M/v + /p

(Mv + p)2 −M2 + i0
=

1 + /v

2

1

p · v + i0
+O

( p
M

)
Mv + p

=
p

+O
( p
M

)

1 + /v

2
γµ

1 + /v

2
=

1 + /v

2
vµ

1 + /v

2

We may insert the projectors (1 + /v)/2 before u(Pi) and
after ū(Pi), too, because

/vu(Mv + p) = u(Mv + p) +O
( p
M

)
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Qedland

We have derived the HEET Feynman rules from the QED
ones at M →∞. Therefore, we again arrive at the HEET
Lagrangian which corresponds to these Feynman rules.

We have thus proved that at the tree level any QED
diagram is equal to the corresponding HEET diagram up to
O(p/m) corrections. This is not true at loops, because loop
momenta can be arbitrarily large. Renormalization
properties of HEET (anomalous dimensions, etc.) differ
from those in QED.
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Exponentiation

1-loop correction to x-space propagator, multiply by itself
Integral in t1, t2, t′1, t′2 with 0 < t1 < t2 < t, 0 < t′1 < t′2 < t
Ordering of primed and non-primed t’s can be arbitrary
6 regions corresponding to 6 diagrams

0 tt1 t2
× 0 tt′1 t′2

= + +

+ + +



Exponentiation

This is 2× the 2-loop correction
1-loop correction cubed is 3!× the 3-loop correction, . . .

S(t) = S0(t) expw1

w1 = − e2
0

(4π)d/2

(
it

2

)2ε

Γ(−ε)
(

1 +
2

d− 3
− a0

)
In the d-dimensional Yennie gauge the exact propagator is
free



Exponentiation

No corrections to the photon propagator ZA = 1: a = a0,
e = e0

Zh = exp
[
−(a− 3)

α

4πε

]
γh = 2(a− 3)

α

4π

exactly!



Operators

Full QED operators — series in 1/M
via HEET operators

O(µ) = C(µ)Õ(µ) +
1

2M

∑
i

Bi(µ)Õi(µ) + · · ·

Matching on-shell matrix elements



Electron field

ψ0(x) = e−iMv·x
[
z

1/2
0 hv0(x) + · · ·

]

On-shell matrix elements

<0|ψ0|e(p)> =
(
Zos
ψ

)1/2
u(p)

<0|hv0|e(p)> = (Zos
h )1/2 uv(k)

Bare decoupling Zos
h = 1

z0 =
Zos
ψ (e

(1)
0 )

Zos
h (e

(0)
0 )

Renormalized decoupling

z(µ) =
Zh(α

(0)(µ), a(0)(µ))

Zψ(α
(1)
s (µ), a(1)(µ))

z0
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Gauge dependence of QED propagators

D0
µν(k) =

1

k2

(
gµν −

kµkν
k2

)

+ ∆(k)kµkν

S(x) = SL(x)

e−ie
2
0(∆̃(x)−∆̃(0))

∆̃(x) =

∫
∆(k)e−ikx

ddk

(2π)d

∆(k) =
a0

(k2)2
∆̃(0) = 0 in dim. reg.

Landau, Khalatnikov (1955)
Fradkin (1955)
Bogoliubov, Shirkov (1957)
Zumino (1960)
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Gauge dependence of Zψ, γψ
Massless electron

S(x) = S0(x)eσ(x)

σ(x) = σL(x) + a0
e2

0

(4π)d/2

(
−x2

4

)ε
Γ(−ε)

= σL(x) + a(µ)
α(µ)

4π

(
−µ2x2

4

)ε
eγEεΓ(−ε)

= logZψ + σr

logZψ(α, a) = logZL(α)− a α

4πε

γψ(α, a) = 2a
α

4π
+ γL(α)

d log(a(µ)α(µ))/d log µ = −2ε exactly
γL(α) starts from α2

known to 5 loops
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Gauge independence of z(µ) in QED

I z0 = Zos
ψ gauge invariant

I logZh = (3− a(0))
α(0)

4πε
α(0) = αos ≈ 1/137

I logZψ = −a(1)(µ)
α(1)(µ)

4πε
+ (gauge invariant)

I Decoupling a(1)α(1) = a(0)α(0)

Gauge dependence cancels in log(Z̃ψ/Zψ)



Result

z(Mos) = 1− α

π

+

(
π2 log 2− 3

2
ζ3 −

55

48
π2 +

5957

1152

)(α
π

)2

+ · · ·



Electron propagator near the mass shell
On-shell mass M = M0 + δM , ω �M

P = (M + ω)v Σ(P ) = Σ0(ω) + Σ1(ω)(/v − 1)

S(P ) =
1

/p−M0 − Σ(p)

=
1

[M + ω − Σ1(ω)] /v −M + δM − Σ0(ω) + Σ1(ω)

The denomunator

[M + ω − Σ1(ω)]2 − [M − δM + Σ0(ω)− Σ1(ω)]2

should vanish at ω = 0:

δM = Σ0(0)
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Heavy–heavy current

J0 = ϕ∗v′0ϕv0 = ZJ(α(µ))J(µ) coshϕ = v · v′

Γ(ϑ) =
d logZJ
d log µ

Exponentiation: 1-loop formula is exact
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Limiting cases
ϑ� 1 Series in ϑ2

Γ(ϑ) =
α

3π
ϑ2 +O(ϑ4)

ϑ� 1 Γ(ϑ) = Γlϑ+O(ϑ0)

Γl =
α

π

Euclidean space cosϑE = v · v′

Γ(ϑE) = 4
α

4π
(ϑE cotϑE − 1)

−1 10

cosϑE
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ϑE → π

Heavy-particle pair production

~r = ~ut

~r = ~0

U(r) = − e
2

4π
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W = exp
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0

dt U(ut)

]
= exp

[
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e2
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T 2ε

2εu1−2ε

]
ZJ = exp

[
i
α

2εu

]
Γ = −iα

u
u⇒ iδ Γ(π − δ) = −α

δ
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HQET

L = L0 +
C0
k

2M
O0
k +

C0
m

2M
O0
m +O

(
1

M2

)
L0 = h+

0 iD0h0

O0
k = h+

0
~D2h0 = Zk(αs(µ))Ok(µ)

O0
m = g0h

+
0
~Ba · ~σtah0 = Zm(αs(µ))Om(µ)

Reparametrization invariance

Zk = 1 Ok = O0
k

C0
k = 1 Ck(µ) = Z−1

k C0
k = 1
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Propagator

= −

S(t) = S0(t) exp

[
CF

g2
0

(4π)d/2

(
it

2

)2ε

S

+ CF
g4

0

(4π)d

(
it

2

)4ε

(CASA + TFnlSl)

]



Chromomagnetic interaction

F2(0) =
g2

0M
−2ε

(4π)d/2
Γ(ε)

2(d− 3)

×
[
2(d− 4)(d− 5)CF − (d2 − 8d+ 14)CA

]
IR divergent (unlike QED)
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Mass splitting

M2
B∗ −M2

B =
4

3
C(4)
m (µ)µ2

G(4)(µ) +O
(

ΛQCD

Mb

)
M2

B∗ −M2
B

M2
D∗ −M2

D

=

(
α

(4)
s (Mc)

α
(4)
s (Mb)

)−9/25 [
1 +O

(
αs,

ΛQCD

Mb,c

)]



In the past

Only renormalizable theories were considered well-defined:
they contain a finite number of parameters, which can be
extracted from a finite number of experimental results and
used to predict an infinite number of other potential
measurements. Non-renormalizable theories were rejected
because their renormalization at all orders in
non-renormalizable interactions involve infinitely many
parameters, so that such a theory has no predictive power.
This principle is absolutely correct, if we are impudent
enough to pretend that our theory describes the Nature up
to arbitrarily high energies (or arbitrarily small distances).



At present

We accept the fact that our theories only describe the
Nature at sufficiently low energies (or sufficiently large
distances). They are effective low-energy theories. Such
theories contain all operators (allowed by the relevant
symmetries) in their Lagrangians. They are necessarily
non-renormalizable. This does not prevent us from
obtaining definite predictions at any fixed order in the
expansion in E/M , where E is the characteristic energy and
M is the scale of new physics. Only if we are lucky and M
is many orders of magnitude larger than the energies we are
interested in, we can neglect higher-dimensional operators
in the Lagrangian and work with a renormalizable theory.



Conclusion

Practically all physicists believe that the Standard Model is
also a low-energy effective theory. But we don’t know what
is a more fundamental theory whose low-energy
approximation is the Standard Model. Maybe, it is some
supersymmetric theory (with broken supersymmetry);
maybe, it is not a field theory, but a theory of extended
objects (superstrings, branes); maybe, this more
fundamental theory lives in a higher-dimensional space,
with some dimensions compactified; or maybe it is
something we cannot imagine at present.



Conclusion

The only model-independent method to search for physics
beyond the Standard Model (without inventing arbitrary
scenarios) is to use SMEFT: add operators having higher
dimensions (5, 6) to the Standard Model Lagrangian with
unknown coefficients, and to try to measure these
coefficients experimantally. As soon as some coefficient(s) is
proved to be non-zero, we know that the Standard Model is
not exact. After measuring sufficiently many such
coefficients we can start inventing a more fundamental
theory which explains them.
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