GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Measuring the Fluorescence Decay-time Constants of the JUNO Liquid Scintillator using Gamma Radiation and a Pulsed Neutron Beam

Raphael Stock

with Hans Steiger & Lothar Oberauer

Baikal Summer School 2019

Scintillation Process in JUNO's Mixture

Energy hopping:

 Molecular collisions with neighbouring solvents, spatial propagation of excitation energy

Förster mechanism:

- Dipole-dipole interaction,
- fast (depending on concentration) and local transfer of energy

Lifetimes of molecular excited states:

- depend on the concentration of solvent, fluor and wavelength-sifters
- influence pulse shape of events

Event Reconstruction & Pulse Shape Analysis

- Emission of initial photons smeared out in time
- Fluorescence decay-time constants have to be considered for the reconstruction algorithms of position and timing
- Global Monte Carlo Simulation (photon emission and propagation model) of the entire JUNO detector
- Parametrization of pulses from different particle types helps to discriminate certain events from background

Search for Proton Decay

Distribution of Light Emission in the Fluorescence Process

Experimental Setup

Dark box

LS Vessel

PMTs with Mu-Shield (3x ETEL 9821, 3inch)

Setup during Commissioning Phase

Readout Electronics and Trigger Logic for Pulsed Neutron Beam

- ADC triggered on the coincidence of the beam chopper signal and the two close PMTs
- Searching for single photon electron events in the far PMT by offline analysis
- Rates are adjusted with analog counters (~3% of the triggers contain 1 PE in PMT 2), constantly cross-checked during beam time

Heavy Ion Beam driven pulsed Neutron and Gamma Generation

Schematic Drawing of the Hydrogen Tanget

The MLL Tandem Laboratory (Hall II Beamline -10°)

Hydrogen Cell with Beam Dump

Beam Time in April/May

Setup during Beam time at the MLL in Hall 2

MLL Control Room

Time of Flight Spectrum of Neutrons and Gammas

Test Example Event of all three PMTs with the Beam Chopper

TOF Spectrum of Neutrons and Gammas

- ¹¹B beam is chopped and bunched on the low energy part of the beamline directly after the injector
- Ion bunch of 10 ns width is hitting the hydrogen gas target every 1250 ns
- Since the detector is placed ≈ 1.5 m away from the hydrogen cell, the TOF can be used for particle identification.
- TOF of neutrons is smeared due to ¹¹B⁵⁺ energy losses caused by non homogeniously sputtered gold (from the beam stop) onto the inside of the target vessel foil (less ¹¹B⁵⁺ energy → less neutron energy → longer TOF).

Preliminary Data Analysis

Example: first data of Friday night

Time-Of-Flight Spectrum of Neutrons and Gammas

Pulse Heights

Preliminary Data Analysis

Time-Of-Flight Spectrum of Neutrons and Gammas

Around 5 % Gammas in our Neutron sample

Preliminary Data Analysis

Beam Time Data Runs	Total Events	Neutron Events after Cuts
Friday 1	1,000,000	16,104
Friday 2	816,600	14,030
Run 1	2,000,000	33,318
Run 2	2,000,000	32,160
Run 3	2,000,000	32,605
Run 4	500,000	8,611
Total Beam time	8,316,600	136,828

Preliminary Results

Preliminary Results of the Beam Time

• **Simultaneous fitting** of gamma and neutron data with same decay-time constants for both curves but different probabilities

 MCMC-Fitting data by a convolution of the detector resolution (Gaussian) and four exponential decays

$$F(t) = \sum N_i imes \exp\left(-rac{t-t_0}{ au_i}
ight) * R(t)$$

Prediction of the shortest time constant prediction as function of the PPO concentration

All uncertainties purly statistical!

 More long lived decays in Neutron spectrum → Matches our expectation

Open Tasks

- Cross-check data analysis and perform an unbinned maximum likelihood fit with RooFit toolkit or probfit library
- Implement a Monte Carlo simulation of the experiment with Geant4 to study e.g. backgrounds or energy deposition by neutrons in other materials before interacting with the LS
- Sophisticated energy calibration for Quenching factor calculations (MC-based Compton edge reconstruction to obtain energy response of the detector for e.g. electrons, analogous to Vincenz Zimmer's PhD Thesis)
- Looking into the **physics** behind the fluorescence process of different particle types (e.g. working through literature)

Outlook

This September: 11-day beam time at MLL

Planned samples:

- 1. JUNO Type I (LAB + 3 g/I PPO + 20 mg/l bisMSB)
- 2. JUNO Type II (LAB + 2.5 g/l PPO + 15 mg/l bisMSB, Nanjing Spec. Lab)
- 3. Slow LS (LAB + 70 mg/l PPO, Att. Length = 25 m, Nanjing Spec. Lab)
- 4. US WbLS (Water + Surfactant: LAS + 5% JUNO LS)
- 5. Bavarian WbLS (Water + Surfactant: Triton X100 + 5% JUNO)
- 6. Borexino LS (PC + 1.5 g/l PPO)

Thanks for your attention!

