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Introduction

In the papers by A.B. Govorkov (1979) and independently by T.D. Palev
(1977) a formalism for the quantization of fields based on the relations of
the Lie algebra of the unitary group SU(2M + 1) was set up. The suggested
scheme of quantization was called “the uniquantization”. In this work we
would like to investigate in more detail some properties of the relations
obtained by Govorkov, and in particular, to establish a connection between
the unitary quantization and para-Fermi statistics of order 2.

Let (ak, a
†
k) and (bk, b

†
k) be two sets of the annihilation and creation opera-

tors obeyed the Green commutation relations (H.S. Green (1953)):

[[âk, âl ], âm] = 2δ̂lm âk − 2δ̂km âl, (1)

[[b̂k, b̂l ], b̂m] = 2δ̂lm b̂k − 2δ̂km b̂l, (2)

where k, l,m = 1, 2, . . . ,M . The operator with hat above âk stands for ak or

a†k and δ̂kl = δkl when âk = ak(a
†
k) and âl = a†l (al), and δ̂kl = 0 otherwise.

The same is also valid for the operator b̂k.



Introduction. The Govorkov relations

In addition to (1) there exist the mutual commutation relations of two types

between the operators âk and b̂k:
1. trilinear relations

[[b̂m, âk ], âl] = 4δ̂km b̂l + 2δ̂lk b̂m + 2δ̂lm b̂k, (3)

[[âm, b̂k ], b̂l] = 4δ̂km âl + 2δ̂lk âm + 2δ̂lm âk, (4)

2. bilinear relations

[âk, b̂m ] = [âm, b̂k ], [âk, âm ] = [b̂k, b̂m ]. (5)

As is well known, the commutation relations (1) and (2) generate an algeb-
ra which is isomorphic to the algebra of the orthogonal group SO(2M + 1).
The other relations (3) – (5) complete this algebra to the algebra of the
unitary group SU(2M + 1). The particle-number operator

N =
1

2

M∑

k=1

(
[a†k, ak ] + p

)(
≡ 1

2

M∑

k=1

(
[b†k, bk ] + p

))
(6)

together with the algebra (1) – (5) fixes the unitary quantization scheme.



Introduction. The Green decomposition

Each field operator is expanded into the so-called Green components:

ak =

p∑

α=1

a
(α)
k , bm =

p∑

α=1

b(α)m , (7)

where p is the order of parastatistics. Each pair of components belonging to
the same field satisfies the commutation rules

{a(α)k , a
†(α)
l } = δkl , {a(α)k , a

(α)
l } = 0,

[a
(α)
k , a

(β)
l ] = 0, [a

(α)
k , a

†(β)
l ] = 0, α 6= β,

(8)

and similarly for the φb field. We postulate that components a
(α)
k , b

(β)
m and

an additional operator Ω satisfy the following system of commutation rules:

[b(α)m , a
†(α)
k ] = 2δmkΩ, [a

(α)
k , b†(α)m ] = 2δmkΩ

†, (9)

[a
(α)
k , b(α)m ] = [a

†(α)
k , b†(α)m ] = 0, (10)

[Ω, a
(α)
k ] = b

(α)
k , [Ω, b(α)m ] = −a(α)m , α 6= β, (11)

{a(α)k , b(β)m } = {a†(α)k , b(β)m } = {a(α)k , b†(β)m } = {a†(α)k , b†(β)m } = 0. (12)



Govorkov’s bilinear relations

It can easily be shown that the fields obeying the rules (9) –(12) verify the
set of the bilinear relations (5) for any order p of parastatistics. Only one of
them requires special consideration, namely,

[a†k, bm ] = [am, b†k ]. (13)

By using the relations (9) and (11), we find for the left-hand side of (13):

[a†k, bm ] = −2pδkm
(
Ω+ Ω†

)
+ [am, b†k ].

Thus, the bilinear relation (13) will hold if the operator Ω satisfies the fol-
lowing additional condition:

Ω+ Ω† = 0. (14)

Further we consider the trilinear relations for two different parafields. A par-
ticular consequence of the general formula (3) is the following three relations

[[bm, a†k ], al] = 2δklbm + 4δkmbl, (15)

[[al, bm ], a†k] = −2δklbm − 2δkmbl, (16)

[[a†k, al ], bm] = −2δkmbl. (17)



Govorkov’s trilinear relations

Let us consider the trilinear relation (15). Taking into account (8), (12) and
the generalized Jacoby’s identities

[A, [B,C ]] = −[B, [C,A]]− [C, [A,B ]], (18)

[A, [B,C ]] = {C, {A,B}} − {B, {A,C}}, (19)

{A, [B,C ]} = {B, [C,A]} − [C, {A,B}], (20)

[A, {B,C}] = −[B, {C,A}] − [C, {A,B}], (21)

we finally obtain, instead of the left-hand side of (15)

[[bm, a†k ], al] = 2(p− 1)δlk bm + 2pδmk bl +
∑

α6=β 6=γ

{b(α)m , {a(γ)l , a
†(β)
k }}. (22)

We see that this expression reproduces (15) in the only case, when p = 2.
In this special case the last term on the right-hand side of (22) is simply ab-
sent and the numerical coefficients in the other terms take correct values.
The same reasoning for the l.h.s. of the relation (16) leads to

[[al, bm ], a†k] = −2(p− 1)δklbm − 2(p − 1)δmk bl −
∑

{b(β)m , {a†(γ)k , a
(α)
l }}.

We see again that this expression reproduces (16) only for the case p = 2.



Inclusion of para-Grassmann numbers

Now our task is to derive the commutation rules involving the para-Grass-
mann numbers ξk and operators ak, bm. In the case of a single para-Fermi
field, for instance φa, such commutation rules were suggested in the paper
by M. Omote and S. Kamefuchi (1979):

[ak, [al, ξm ]] = 0, [ak, [a
†
l , ξm ]] = 2δklξm,

[ξk, [ξl, am ]] = 0, [ξk, [ξl, ξm ]] = 0.
(23)

For para-Grassmann numbers ξk the Green representation is also true

ξk =

p∑

α=1

ξ
(α)
k .

The bilinear commutation relations for Green components a
(α)
k , b

(α)
m , ξ

(α)
l are:

{a(α)k , ξ
(α)
l } = 0, {b(α)m , ξ

(α)
l } = 0, {ξ(α)k , ξ

(α)
l } = 0,

[a
(α)
k , ξ

(β)
l ] = 0, [b(α)m , ξ

(β)
l ] = 0, [ξ

(α)
k , ξ

(β)
l ] = 0, α 6= β

(24)

plus Hermitian conjugation. They turn (23) into identity.



Inclusion of para-Grassmann numbers

A direct consequence of the commutation rules (9) – (12) and (24) for the
Green components is the following trilinear relations:

{bm, [a†k, ξl ]} = 2δmk{ξl ,Ω}, {ak, [b†m, ξl ]} = −2δmk{ξl .Ω}. (25)

Here we can make a step forward and postulate the following relation:

{ξl ,Ω} = Λξl, (26)

where Λ is some constant satisfying the condition: Λ = −Λ∗. Thus, instead
of (25), now we have

{bm, [a†k, ξl ]} = 2Λδmk ξl, {ak, [b†m, ξl ]} = 2Λ∗δmkξl. (27)

It is these relations that we accept as the definitions of the trilinear relations
involving two different parafields φa, φb and para-Grassmann numbers ξl.

Further, A.B. Govorkov (1979) has introduced an important operator Ñ :

Ñ =
i

2M + 1

M∑

k=1

(
[a†k, bk ] + [b†k, ak ] + λ

)
, (28)

where λ is some real constant different from zero. The operator Ñ posses-
ses the following properties:

[iÑ , ak ] = bk, [iÑ , bk ] = −ak. (29)



A connection between the operators iÑ and Ω

There exists a certain connection between the operators iÑ and Ω, namely

iÑ=
2M

2M + 1
Ω− 1

2(2M + 1)

M∑

k=1

(
[a

†(1)
k , b

(2)
k ]+[a

†(2)
k , b

(1)
k ]

)
− M

2(2M + 1)
λ.

Taking into account (26) and (27) from the last expression it follows that

{ξl , iÑ} = Λ̃ξl, Λ̃ =
M

2M + 1
(2Λ− λ). (30)

Further, by using the relations (11), we get for the Green components a
(α)
k :

[iÑ , a
(1)
k ] =

1

2M + 1

(
2Mb

(1)
k + b

(2)
k

)
, [iÑ , a

(2)
k ] =

1

2M + 1

(
2Mb

(2)
k + b

(1)
k

)
.

Similar calculations for commutators with Green components b
(α)
m , lead us to

[iÑ , b(1)m ] =
(−1)

2M + 1

(
2Ma(1)m + a(2)m

)
, [iÑ , b(2)m ] =

(−1)

2M + 1

(
2Ma(2)m + a(1)m

)
.

In spite of somewhat unusual form of these commutation rules, they correc-

tly reproduce the relations (29) when ak = a
(1)
k + a

(2)
k , bm = b

(1)
m + b

(2)
m .



Commutation relations with the operator eαiÑ

The basic relations determining a rule of rearrangement between the opera-

tor eαiÑ and ak, bm have the following form

eαiÑak = (ak cosα+ bk sinα)e
αiÑ ,

eαiÑ bm = (bm cosα− am sinα)eαiÑ ,
where α is an arbitrary real number. We are interested in two particular cases

1. for α = ±π we have

{e±πiÑ, ak} = 0, {e±πiÑ, bm} = 0; (31)

2. for α = ±π/2 we have

e±π/2iÑak = ±bk e
±π/2iÑ , e±π/2iÑbm = ∓ame±π/2iÑ . (32)

The relations (32) define two equivalent “mapping” the operator bk into the
operator ak (and vice versa):

ak = ±e∓π/2iÑbk e
±π/2iÑ , ak = ∓e±π/2iÑ bk e

∓π/2iÑ . (33)

Further, a rule of rearrangement between the operator eαiÑ and the para-
Grassmann numbers ξk has the form:

eαiÑ ξk = ξk e
αΛ̃e−αiÑ . (34)



The mapping of the trilinear relations

Let us consider the mapping of the trilinear relation including the operator
am once. Making use of (33) and (34), we result in the following expression:

[ξk, [ξl, am ]] = 0 ⇒ {ξk, {ξl, bm}} = 0. (35)

Further, the mapping of more nontrivial trilinear relation leads to

{ak, [ξl, b†m ]} = 2Λδmk ξl ⇒ [bk, {ξl, a†m}] = 2Λδmk ξl. (36)

A mapping of the trilinear relation containing the operators ak and a†l simul-
taneously is

[ak, [a
†
l , ξm ]] = 2δklξm. ⇒ {bk, {b

†
l , ξm}} = 2δklξm.

Contrary to the expectation, under the mapping (33) the relations do not
turn into similar relations with the only replacement am → bm. We see that
in addition to the replacement, all commutators are replaced by anticommu-
tators and vice versa. This circumstance can take place exceptionally for pa-
rastatistics of order 2.

The peculiarity of all examples considered above is that the para-Grassmann
number ξk always enters into the commutator or anticommutator along with
the operator ak or bm (or with their Hermitian conjugation).



Action of the operators Ω and iÑ on the vacuum state

We consider the problem of acting the operators Ω and Ñ on the vacuum

state |0〉. For the operator Ñ , Eq. (28), we have

Ñ |0〉 = − i

2(2M + 1)

M∑

k=1

bka
†
k|0〉 +

iM

2(2M + 1)
λ|0〉. (37)

If one uses an additional condition of a unique vacuum state |0〉:

bma†k|0〉 = 0, akb
†
m|0〉 = 0, (38)

obtained by O. Greenberg, A. Messiah (1965) within their extension of Green
trilinear relations (1) and (2) to the case of different parafields, then we get

Ñ |0〉 = λ
iM

2(2M + 1)
|0〉.

Hence, if we wanted to demand the fulfillment of the condition

Ñ |0〉 = 0 (39)

by analogy with similar condition for the particle-number operator: N |0〉=0,
we would lead to the trivial requirement: λ = 0. The latter actually results in
the degeneration of the theory under consideration. The only way to avoid
this is to give up the condition (38).



Action of the operators Ω and iÑ on the vacuum state

We have shown that within the framework of the unitary quantization we come to
the following additional conditions of a unique vacuum state |0〉, instead of (38):

bma†k|0〉 = cδmk|0〉, akb
†
m|0〉 = c∗δmk|0〉, (40)

where c is some, generally speaking, complex constant, different from zero. In this

case, acting the operator Ñ on the vacuum is

Ñ |0〉 = −(c− λ)
iM

2(2M + 1)
|0〉.

The requirement of the fulfillment of three conditions

Ñ |0〉 = 0, {ξl ,Ω} = Λξl, {ξl , iÑ} =
M

2M + 1
(2Λ− λ)ξl

results in a rule of acting the operator Ω on the vacuum:

Ω|0〉 = 1

4
c |0〉

and in an unique fixing of the constants Λ and c in terms of the parameter λ:

c = λ, Λ =
1

2
λ. (41)

It is the only parameter which remains undefined in the theory in question.



Coherent states

M. Omote and S. Kamefuchi (1979) have introduced the coherent state of
a system of para-Fermi oscillators ak in the following form:

|(ξ)p ; a〉 = exp
(
−1

2

M∑

l=1

[ξl, a
†
l ]
)
|0〉, (42)

in so doing
ak|(ξ)p ; a〉 = ξk|(ξ)p ; a〉. (43)

In notation of the coherent state |(ξ)p 〉 accepted by these authors, we have
inserted additional symbol a to emphasize that this state is associated with
the field φa. In a similar way, we can define a coherent state for a system of
para-Fermi oscillators bk.

In the general case the coherent state for the b-operators will never be the
coherent state for the a-operators. However, for parastatistics of order 2, wi-
thin the framework of uniquantization the situation is somewhat different:

ak|(ξ)2 ; b〉 = Λξk

(∑

s

1

(s+ 1)!
[ξm , b†m ]s

)
|(ξ)2 ; b〉. (44)

The complexity of expression on r.h.s. of (44) is ultimately a consequence of
“involving” the coherent state with the opposite sign of the variable ξk.



Coherent states: “G-parity operator” (−1)N

Actually, if we act by the operator [ξl , b
†
l ] on (44), we will have

ak [ξl , b
†
l ] |(ξ)2 ; b〉 = Λξk

(
|(ξ)2 ; b〉 − |(−ξ)2 ; b〉

)
. (45)

The state |(−ξ)2 ; b〉 in turn can be presented as a result of acting on the
initial coherent state |(ξ)2; b〉 by the parafermion number counter (−1)N

(“G-parity operator”), with the particle-number operator (6), i.e.

(−1)N |(ξ)2 ; b〉 = |(−ξ)2 ; b〉.
We might observe in passing that the relation of the following form

[ak, [b
†
l , ξl ]]|(ξ)2 ; b〉 = 2Λξk(−1)N |(ξ)2 ; b〉 (46)

will be a consequence of (45) and of the basic relation

{ak, [b†m, ξl ]} = 2Λ∗δmkξl.

The relation (46) may, in turn, implies

[ak, [b
†
m, ξl ]] = 2Λδmk ξl(−1)N .



Coherent states: “G-parity operator” (−1)N

Within the framework of the usual Fermi statistics the state:

(−1)N |ξ〉 = |(−ξ)〉
was considered by E. D’Hoker and D.G. Gagné (1996) in the context of the
construction of worldline path integral for the imaginary part of the effective
action. It is also interesting to note that the number counter enters into the
so-called deformed Heisenberg algebra (the Calogero-Vasiliev oscillator)
(M.A. Vasiliev, 1990, 1991) involving the reflection operator R = (−1)N

and a deformation parameter ν ∈ R.

Further, M. Plyushchay (1997) has shown that the single-mode deformed
Heisenberg algebra with reflection has finite-dimensional representations of
some deformed parafermion algebra which at ν = −3 is reduced to the stan-
dard parafermionic algebra of order 2. This suggests that there is a certain
connection between the unitary quantization and the deformed Heisenberg
algebra.



Mapping coherent states

Here, we should also like to consider a problem of mapping the expression (43).
As the transformation connecting the operators ak and bk we take the relation:

ak = −eπ/2iÑbk e
−π/2iÑ . (47)

The calculations are somewhat lengthly and eventually lead to the simple answer:

ak e
−

1

2
[ξl , a

†
l ]|0〉 = ξk e

−
1

2
[ξl , a

†
l ]|0〉 ⇒ bk e

1

2
{ξl , b

†
l }|0〉 = ξk e

1

2
{ξl , b

†
l }|0〉.

(48)

The first expression in (48) is true by virtue of the the trilinear relations

[ξk, [ξl, am ]] = 0 and [ak, [a
†
l , ξm ]] = 2δklξm, (49)

while the second one holds by virtue of dual representation of (49) under mapping
(47)

{ξk, {ξl, bm}} = 0 and {bk, {b
†
l , ξm}} = 2δklξm. (50)

A consequence of Eqs. (49) and (50) is an existence of two alternative definitions
of the parafermion coherent state:

|(ξ)2 〉 = exp
(
−1

2

∑
l
[ξl, a

†
l ]
)
|0〉 and |(ξ)2〉 = exp

( 1

2

∑
l
{ξl, a

†
l }
)
|0〉.

We stress that an existence of these two definitions is inherent in the para-Fermi
statistics of order 2 itself and is not specific to the unitary quantization scheme.



Mapping coherent states

In both cases the main property of the coherent state is fulfilled

ak|(ξ)2 〉 = ξk|(ξ)2 〉
and, besides, the overlap function has its usual form

〈(ξ̄ ′)2 |(ξ)2〉 = e
1
2 [ξ̄

′
l , ξl ].

The precise meaning of appearance of such “twins” remains unclear for us.
Perhaps one reason of a purely algebraic nature is the fact that of the four
basic identities (18) – (21), only two ones are independent, namely (19) and
(20). This circumstance and its consequence were analyzed in detail in paper
by P.M. Lavrov, O.V. Radchenko, and I.V. Tyutin (2014). In particular, the
Jacobi identity

[A, [B,C ]] = −[B, [C,A]]− [C, [A,B ]]

is a consequence of the generalized identity

[A, [B,C ]] = {C, {A,B}} − {B, {A,C}}.
The latter contains double anticommutators on r.h.d. side as in (50). This
hints that one of the relations (49) and (50) is a consequence of the other
for p = 2. In any case we may state that the para-Fermi statistics of order 2
is a very special case of parastatistics as well as Fermi statistics of order 1.



The Klein transformation

The Klein transformation allows to lead the initial relations for the Green
components of operators, which contain both commutators and anticommu-
tators, to the normal commutation relations for p ordinary Fermi fields
(K. Drühl, R. Haag, J.E. Roberts (1970)).

In the problem under consideration with two different para-Fermi fields φa

and φb of order p = 2, we need at least two Klein operators, which we

designate as H
(2)
A and H

(1)
B . It is necessary to define the Klein transforma-

tion of Green’s components a
(α)
k and b

(α)
m so that to reduce simultaneously

to the normal form both the standard commutation relations (8) separately

for each set
{
a
(α)
k

}
,
{
b
(α)
m

}
and the commutation relations (9) – (12) of the

mixed type. We state that the required Klein transformation has the form:

a
(1)
k = A

(1)
k H

(2)
A , b

(1)
m = −iB

(1)
m H

(1)
B ,

a
(2)
k = iA

(2)
k H

(2)
A , b

(2)
m = B

(2)
m H

(1)
B ,

(51)

where A
(α)
k and B

(α)
m are new Green’s components satisfying the following

commutation rules with Klein operators H
(2)
A = (−1)N

(2)
A , H

(1)
B = (−1)N

(1)
B ,

where N
(2)
A ≡ (1/2)

∑M

k=1
[A

†(2)
k , A

(2)
k ] + M/2, (similarly for N

(1)
B ).



The Klein transformation: new commutation rules



[A

(1)
k ,H

(2)
A ] = 0, {A(1)

k ,H
(1)
B } = 0,

{A(2)
k ,H

(2)
A } = 0, [A

(2)
k ,H

(1)
B ] = 0,




{B(1)

m ,H
(1)
B } = 0, [B

(1)
m ,H

(2)
A ] = 0,

[B
(2)
m ,H

(1)
B ] = 0, {B(2)

m ,H
(2)
A } = 0.

At the same time the Klein operators themselves satisfy the conditions
(
H

(2)
A

)2
=

(
H

(1)
B

)2
= I, [H

(2)
A ,H

(1)
B ] = 0. (52)

The Klein transformation (51) leads to the normal form of the relations (8)

{
A

(α)
k , A

†(α)
l

}
= δkl ,

{
A

(α)
k , A

†(β)
l

}
= 0,

{
A

(α)
k , A

(β)
l

}
= 0, α 6= β

and the same is hold for B
(α)
m . Instead of (9) and (10), we now get

{
B(α)

m , A
†(α)
k

}
= (2/i) δmk Ω̃,

{
A

(α)
k , B(α)

m

}
= 0,

{
A

†(α)
k , B†(α)

m

}
= 0,

and the relations (11) with the use of Ω = H
(2)
A Ω̃H

(1)
B transform to

{
A

(α)
k , Ω̃

}
= iB

(α)
k ,

{
B(α)

m , Ω̃
}
= iA(α)

m . (53)

Finally, the anticommutation relations (12) retain the form with the replace-

ments a
(α)
k → A

(α)
k and b

(α)
m → B

(α)
m .



The Lie-supertriple system

We would like to discuss an interesting connection between the Govorkov
trilinear relations (15) – (17) and Lie-supertriple system (S. Okubo (1994)).

Let V be a vector superspace, i.e. it represents a direct sum

V = VB ⊕ VF .

In this superspace the grade is entered by

σ(x) =

{
0, if x ∈ VB

1, if x ∈ VF
(54)

and the triple superproduct [..., ..., ...] is defined as a trilinear mapping

[..., ..., ...]; V ⊗ V ⊗ V → V.

The triple superproduct is subject to three conditions (we do not present
their here, see S. Okubo (1994)). Besides, it is supposed that the underlying
vector superspace V always possesses a bilinear form 〈x| y〉 satisfying

〈x|y〉 = (−1)σ(x)σ(y)〈y |x〉,
〈x|y〉 = 0, if σ(x) 6= σ(y).

(55)



The Lie-supertriple system

Let P : V → V be a grade-preserving linear map in V , i.e.

σ(Px) = σ(x), for any x ∈ V

and we assume the validity of

P 2 = λI, 〈x|Py〉 = −〈Px|y〉, (56)

where I is the identity mapping in V and λ is nonzero constant. The follo-
wing expression for the triple product:

[x, y, z] = 〈y |Pz〉Px− (−1)σ(x)σ(y)〈x|Pz〉Py − 2〈x|Py〉Pz (57)

+λ〈y|z〉x − (−1)σ(x)σ(y)λ〈x|z〉y
transforms the superspace V into a Lie-supertriple system with this triple
product.The Govorkov trilinear relations (15) – (17) represent particular
cases of the general formula (57). In addition, the triple product contains
also the standard trilinear relations for the single field φa (and φb).

Our first step is to fix two sets of operators (ak, a
†
k) and (bk, b

†
k), k=1,M

between which we specify a map P by the rule

Pak = bk, P bk = −ak (similarly for a†k and b†k). (58)



The Lie-supertriple system

It immediately follows that: P 2ak = −ak, P
2 bk = −bk and thus, by virtue

of the first condition in (56), the constant λ is uniquely fixed:

λ = −1. (59)

Let us consider the second condition in (56). We set x = a†k and y = bm,
then, due to (58), the condition for the bilinear form 〈·| ·〉 reduces to

〈a†k |am〉 = 〈b†k |bm 〉. (60)

We fix the grade: σ(ak) = σ(a†k) = 0, σ(bm) = σ(b†m) = 0 and choose the
bilinear form 〈x|y〉 to satisfy

〈a†k |am〉 = 〈am |a†k 〉 = −2δkm, 〈b†k|bm〉 = 〈bm|b†k〉 = −2δkm,

〈a†k |a
†
m〉 = 〈ak |am〉 = 0, 〈b†k |b

†
m〉 = 〈bk |bm〉 = 0,

〈a†k |bm〉 = 〈ak |bm〉 = 0, 〈b†k |am〉 = 〈b†k |a
†
m〉 = 0.

(61)

The condition (60) is automatically satisfied. If we set x = bm, y = a†k, and
z = al, then the triple product (57), by virtue of (58), (59), (61), gives us

the relation (15). For x = al, y = bm, z = a†k we reproduce (16) and so on.



The Fock-Schwinger proper-time representation

One of the main reasons of appearance of the present work was a hope to
develop a convenient mathematical technique, which would enable us within
the framework of the Duffin-Kemmer-Petiau formalism to construct the path
integral representation in parasuperspace for the inverse operator L̂−1(z,D)

L̂ ≡ L̂(z,D) = A

(
i

ε1/3(z)
ηµ(z)Dµ +mI

)
, ε(z) ≡ (z − q)(z − q2),

where Dµ = ∂µ + ieAµ(x) is the covariant derivative and q is a primitive

cubic root of unity. The operator L̂(z,D) represents cubic root of some
third order wave operator in an external electromagnetic field (Yu. Markov

et al. (2015)). The Fock-Schwinger proper-time representation for L̂−1 is

1

L̂
≡ L̂2

L̂3
= i

∞∫

0

dτ

∫
d 2χ

τ2
e
−iτ

(
Ĥ(z)− iǫ

)
+

1

2

(
τ [χ, L̂] + 1

4
τ2 [χ, L̂]2

)
,

where Ĥ(z) ≡ L̂3(z,D), χ is a para-Grassmann variable of order p = 2 and
as a proper para-supertime here it is necessary to take a triple (τ, χ, χ2).



A connection with the Duffin-Kemmer-Petiau formalism

Matrix element of the operator L̂−1(z,D) in the corresponding basis of
states can be considered as the propagator of a massive vector particle in a
background gauge field. The matrices ηµ(z) are defined by the matrices βµ
of the Duffin-Kemmer-Petiau algebra

βµβνβλ + βλβνβµ = δµνβλ + δλνβµ

and by the complex deformation parameter z as follows:

ηµ(z) ≡
(
1 +

1

2
z

)
βµ − z

(√
3

2

)
ζµ, ζµ = i [βµ, ω ], (62)

where

ω =
1

(M !)2
ǫµ1µ2...µ2M

βµ1βµ2 . . . βµ2M
.

At the end of all calculations, it should be necessary to passage to the limit
z → q, in particular, for the Hamilton operator we will have:

Ĥ = lim
z→q

Ĥ(z) = lim
z→q

[
A

(
i

ε1/3(z)
ηµ(z)D

µ −mI

)]3
.

Unfortunately, Govorkov’s unitary quantization formalism has proved to be
unsuitable for this purpose. Below we discuss this problem in more detail.



A connection with the Duffin-Kemmer-Petiau formalism

The easiest way to establish a connection between the DKP theory and the
unitary quantization scheme is to identify literally the matrices βµ and ζµ
from the DKP approach with the quantities βµ and ζµ that appear within

uniquantization. The latter are associated with a set of operators (ak, a
†
k)

and (bk, b
†
k) by the relations:

β2k−1 =
1
2 (ak + a†k), β2k = i

2 (ak − a†k),

ζ2k−1 = 1
2 (bk + b†k), ζ2k = i

2 (bk − b†k),
(63)

where k = 1, 2, . . . ,M . In terms of these variables one can rewrite Govorkov
trilinear and bilinear relations (1) – (5) in an equivalent form

[βλ, [βµ, βν ]] = δλµβν − δλνβµ, (64)

[ζλ, [ζµ, ζν ]] = δλµ ζν − δλν ζµ, (65)

[ζλ, [ζµ, βν ]] = 2δµνβλ + δλνβµ + δλµβν , (66)

[βλ, [ζµ, βν ]] = −2δµνζλ − δλνζµ − δλµζν , (67)

[βµ, βν ] = [ζµ, ζν ], [ζµ, βν ] = [ζν , βµ]. (68)



A connection with the Duffin-Kemmer-Petiau formalism

It is necessary to verify whether the relations (64) – (68) will be satisfied if we stay
only within the framework of the DKP formalism. By virtue of the DKP algebra
the bilinear relations (68) are fulfilled. However, the second bilinear relation in (68)
within DKP theory has actually more “weak” form:

[ζµ, βν ] = [ζν , βµ] = −iωδµν. (69)

It is precisely this circumstance that has negative consequence for the trilinear
relations which is now under consideration.
The trilinear relation (64) is satisfied by virtue of the DKP algebra. The relation
(65) also holds, since the same algebra is true for the matrices ζµ. On the strength
of (69), we now have for (66)

[ζλ, [ζµ, βν ]] = −iδµν [ζλ, ω ] ≡ δµνβλ,

but there should be

[ζλ, [ζµ, βν ]] = 2δµνβλ + δλνβµ + δλµβν .

Thus, there is a significant difference between the right-hand sides of these com-
mutators. The trilinear relation (66), just as (67), is not satisfied. We can summa-
rize these considerations with the statement that:
in spite of a close similarity between these two formalisms, the scheme of quantiza-
tion based on the Duffin-Kemmer-Petiau theory does not embed into the scheme
of the unitary quantization suggested by Govorkov.



Conclusion

• In this talk we have considered various aspects of a connection between
the unitary quantization and parastatistics. In the analysis of the connec-
tion, the primary emphasis has been placed on the use of the Green de-
composition of the creation and annihilation operators, and also para-
Grassmann numbers.

• It was found that a system of the commutation relations derived by Go-
vorkov in the framework of uniquantization is very severe, since it has
been possible to associate this system only with a particular case of pa-
rastatistics, namely, with the para-Fermi statistics of order 2. However,
even so, we needed to introduce a number of additional assumptions and
a new operator Ω.

• In the paper by A.B. Govorkov (1979) the case of an odd number of
dimensions, i.e. the unitary group SU(2M), was also considered. It has
been shown that the Lie algebra of the unitary group contains the Lie
algebra of the symplectic group Sp(2M). The quantization in accordan-
ce with the Lie algebra of the symplectic group Sp(2M) corresponds to
paraboson quantization. One can state a similar task of the connection
between the unitary quantization scheme based on the Lie algebra of the
unitary group SU(2M) and para-Bose statistics.
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Thanks for attention!



The Lie algebra su(2M + 1)

The Lie algebra of the unitary group SU(2M + 1) has the form

[Xµν ,Xσλ] = δνσXµλ − δµλXσν ,
∑2M

µ=0
Xµµ = 0, (70)

where the indices µ, ν, . . . run values 0, 1, 2, . . . 2M . By introducing a new
set of operators

Fµν = Xµν −Xνµ, Fµν = −Fνµ

F̃µν = Xµν +Xνµ, F̃µν = +F̃νµ,

the Lie algebra (70) becomes

[Fµν , Fσλ] = δνσFµλ + δµλFνσ − δµσFνλ − δνλFµσ , (71)

[F̃µν , F̃σλ] = δνσFµλ + δµλFνσ + δµσFνλ + δνλFµσ , (72)

[Fµν , F̃σλ] = δνσF̃µλ − δµλF̃νσ − δµσF̃νλ + δνλF̃µσ . (73)

The condition of speciality turns into:
∑2M

µ=0 F̃µµ = 0. The operators Fµν

form the Lie algebra of the orthogonal group SO(2M +1) and the operators

F̃µν complete this algebra to the algebra of the unitary group SU(2M + 1).



The Lie algebra su(2M + 1)

The unitary quantization procedure is based on the choice of the Lie algebra
of the group SO(2M + 1) as the basis algebra. Further, we introduce the
following quantities:

βµ ≡ iFµ0, β0 = iF00 = 0,

ζµ ≡ F̃µ0, ζ0 = F̃00 6= 0.
(74)

In terms of the variables (74) one can rewrite the algebra (71) – (73) in an
equivalent form of the trilinear relations

[βλ, [βµ, βν ]] = δλµβν − δλνβµ,

[ζλ, [ζµ, ζν ]] = δλµ ζν − δλν ζµ,

[ζλ, [ζµ, βν ]] = 2δµνβλ + δλνβµ + δλµβν ,

[βλ, [ζµ, βν ]] = −2δµνζλ − δλνζµ − δλµζν ,

and the bilinear ones

[βµ, βν ] = [ζµ, ζν ],

[ζµ, βν ] = [ζν , βµ].

Here, the indices run values 1, 2, . . . , 2M .



The Lie algebra su(2M + 1)

The generalization of the trilinear relations valid for any values of indices takes the
form, correspondingly,

[βλ, [βµ, βν ]] = δλµβν − δλνβµ + δ0ν
(
δ0λβµ − δ0µβλ

)
− δ0µ

(
δ0λβν − δ0νβλ

)
,

[ζλ , [ζµ, ζν ]] = δλµ ζν − δλν ζµ + δ0ν
(
δ0λζµ − δ0µζλ − δµλζ0

)

− δ0µ
(
δ0λζν − δ0νζλ − δνλζ0

)
+ 2i

(
δ0ν [βµ, ζλ]− δ0µ[βν , ζλ]

)
,

[ζλ, [ζµ, βν ]] = 2δµνβλ + δλνβµ + δλµβν − δ0ν
(
δ0λβµ − δ0µβλ

)

− δ0µ
(
δ0λβν − δ0νβλ

)
+ 2iδ0µ [ζν , ζλ].

Here, the indices run values 0, 1, 2, . . . , 2M . A distinguishing feature of the last
two expressions is appearing the terms, which are bilinear in β and ζ operators.
These terms cannot be eliminated by any means. The generalization of the bilinear
relations are

[ζµ, ζν ] = [βµ, βν ] − 2i
(
δ0νβµ − δ0µβν

)
,

[ζµ, βν ] − [ζν , βµ] = 2i
(
δ0νζµ − δ0µζν

)

and in particular, for ν = 0 we have (recall that β0 = 0)

[ζµ, ζ0] = −2iβµ, [βµ, ζ0] = 2iζµ. (75)



The Lie algebra su(2M + 1): the operator ζ0

For the unitary representations of the algebra under consideration, the
quantities βµ and ζµ are Hermitian: V

β†
µ = βµ, ζ†µ = ζµ.

This circumstance enables us to introduce Hermitian conjugate operators

ak = β2k−1 − iβ2k, bk = ζ2k−1 − iζ2k,

a†k = β2k−1 + iβ2k, b†k = ζ2k−1 + iζ2k,
(76)

where k = 1, 2, . . . ,M . The algebra (1) – (5) and

[âk, ζ0] = 2ib̂k, [b̂k, ζ0] = −2iâk,

where

ζ0 =
i

2(2M + 1)

M∑

k=1

(
[a†k, bk ] + [b†k, ak ]

)

for the operators ak, bk and ζ0 is a direct corollary of (64) – (68) and (75).

In terms of the operator ζ0, the operator Ñ (28) can be also presented in
the form

Ñ =
1

2
ζ0 +

iM

2(2M + 1)
λ. (77)



The mapping of the trilinear relations

Let us discuss a mapping of the relations, where this circumstance doesn’t
take place, for example, the mapping of the relations of the form

{ξl, [b†m, ak ]} = 2
(
Λ− Λ∗

)
δmkξl, [ξl, {a

†
k, bm}] = 0.

It is evident that under the mapping (33) these two relations can never go
over into each other, since their right-hand sides are different. By repeating
the above arguments, we obtain

{ξl , [a†m, bk ]} = 2
(
Λ∗ − Λ

)
δmkξl, [ξl, {b

†
k, am}] = 0,

i.e the structure of the trilinear relations remains unchanged. The same is
true for the trilinear relations, which don’t contain the variable ξk at all, for
example,

[[a†k, al ], bm] = −2δkmbl ⇒ [[b†k, bl ], am] = −2δkmal.

Here, the structure of the relation is completely conserved with the only re-
placement am → bm.
Thus, all trilinear commutation relations break up into two sets, one of
which changes its structure under the mapping (33), and the other conser-
ves it. Everything depends on how the para-Grassmann variable ξk enters
into the specific trilinear relation.
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