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Lecture 2



Outline

• ways to generate ν masses

• add RH neutrinos

• Weinberg operator

• seesaw mechanism

• other ways

• leptogenesis

• neutrinoless double β decay

• towards theory of (lepton) flavor



Add RH neutrinos

(see e.g. Maggiore, QFT)

• we introduce RH neutrinos νR

νR ∼ (1,1, 0)

so that we can write down Yukawa interactions of the form

yναβ LαL h̃ νβR + h.c.

with LL ∼ (1,2,−1/2) and h̃ ∼ (1,2,−1/2)

and

where α = e, µ, τ and β = 1, ..., N with N being number of νR
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Add RH neutrinos

• we introduce RH neutrinos νR

νR ∼ (1,1, 0)

• if we assign lepton number L +1 to νR, lepton number

symmetry U(1)L remains preserved

• neutrinos are then

Dirac particles

like quarks and charged leptons,

meaning we use a Dirac spinor Ψ of the form (Maggiore, QFT)

Ψ =

⎛

⎝

ΨL

ΨR

⎞

⎠



Add RH neutrinos

• we introduce RH neutrinos νR

νR ∼ (1,1, 0)

so that we can write down Yukawa interactions of the form

yναβ LαL h̃ νβR + h.c.

with

LL ∼ (1,2,−1/2) and h̃ ∼ (1,2,−1/2)

where α = e, µ, τ and β = 1, ..., N with N being number of νR
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Add RH neutrinos

• we introduce RH neutrinos νR

νR ∼ (1,1, 0)

• we can decide how many νR we want to introduce

• two νR – minimal choice

because in this case we can generate 2 non-vanishing neu-

trino masses



Add RH neutrinos

• we introduce RH neutrinos νR

νR ∼ (1,1, 0)

• we can decide how many νR we want to introduce

• one per fermion generation – most conventional choice

because then νR are treated like all other fermion fields.

This is also motivated by ideas of unification, where fermion

fields eR are put together with νeR in one multiplet

LeR =

⎛

⎝

νeR

eR

⎞

⎠ ∼ 2 under SU(2)R

like LeL ∼ 2 under SU(2)L. (Mohapatra, arXiv:hep-ph/0211252v1)



Add RH neutrinos

• we introduce RH neutrinos νR

νR ∼ (1,1, 0)

• we can decide how many νR we want to introduce

• more than 3 νR

because in some more fundamental theories, such as string

theory, many νR are predicted

(see e.g. Buchmüller et al., arXiv:hep-ph/0703078v2)



Add RH neutrinos

• we introduce RH neutrinos νR

νR ∼ (1,1, 0)

so that we can write down Yukawa interactions of the form

yναβ LαL h̃ νβR + h.c.

with

LL ∼ (1,2,−1/2) and h̃ ∼ (1,2,−1/2)

where α = e, µ, τ and β = 1, ..., N with N being number of νR

• upon electroweak symmetry breaking, i.e. h acquires

vacuum expectation value ⟨h⟩, we have

Mν
αβ = yναβ v



Add RH neutrinos

• we introduce RH neutrinos νR

νR ∼ (1,1, 0)

• we can estimate the size of the Yukawa couplings yναβ

|Mν
αβ| = |yναβ | v ! 0.1 eV ,

meaning that for v = 174GeV we find

|yναβ | ! 6 × 10−13

this is really tiny, as expected!

• such small couplings are fine from view point of quantum field

theory, but not very appealing ... why so small?



Weinberg operator

• we can consider operators with mass dimension higher than

4 which are invariant under the SM gauge group

• we thus take into account non-renormalizable operators

• such operators are suppressed by a mass scale M

See Andrej Grozin’s lectures on effective field theories.



Weinberg operator

(Weinberg, PRL43:1566, 1979)

• we can consider operators with mass dimension higher than

4 which are invariant under the SM gauge group

• we thus take into account non-renormalizable operators

• such operators are suppressed by a mass scale M

• the only type of operator with mass dimension 5 is the

Weinberg operator

which is composed of the fields LL and h, since

cαβ
1

M
Lc
αL hLβ L h+ h.c.



Weinberg operator

cαβ
1

M
Lc
αL hLβ L h+ h.c.

• its mass dimension is

5 = 2×
3

2
(L twice) + 2× 1 (h twice)

• it is invariant under the SM gauge group, since

LL ∼ (1,2,−1/2) and h ∼ (1,2, 1/2)

• it is invariant under Lorentz symmetry



Weinberg operator

cαβ
1

M
Lc
αL hLβ L h+ h.c.

• its mass dimension is

5 = 2×
3

2
(L twice) + 2× 1 (h twice)

• it is invariant under the SM gauge group, since

LL ∼ (1,2,−1/2) and h ∼ (1,2, 1/2)

• it is invariant under Lorentz symmetry

• but, it violates lepton number L by 2 units!



Weinberg operator

cαβ
1

M
Lc
αL hLβ L h+ h.c.

• upon electroweak symmetry breaking, i.e. h acquires

vacuum expectation value ⟨h⟩, we have

cαβ
1

M
νcαL νβ L v2 + h.c.

• which corresponds to neutrino masses

Mν
αβ = cαβ

v2

M

• since this mass term breaks lepton number L, it is called

Majorana mass term

• this type of mass term "connects" a fermion field with itself



Weinberg operator

cαβ
1

M
Lc
αL hLβ L h+ h.c.

• upon electroweak symmetry breaking, i.e. h acquires

vacuum expectation value ⟨h⟩, we have

cαβ
1

M
νcαL νβ L v2 + h.c.

• which corresponds to neutrino masses

Mν
αβ = cαβ

v2

M

• neutrinos with such a mass term are called

Majorana particles

• such neutrinos are their own antiparticles!

(Maggiore, QFT)



Weinberg operator

cαβ
1

M
Lc
αL hLβ L h+ h.c.

• upon electroweak symmetry breaking, i.e. h acquires

vacuum expectation value ⟨h⟩, we have

cαβ
1

M
νcαL νβ L v2 + h.c.

• which corresponds to neutrino masses

Mν
αβ = cαβ

v2

M

• neutrinos with such a mass term are called

Majorana particles

[Quarks and charged leptons cannot be Majorana particles]



Weinberg operator

cαβ
1

M
Lc
αL hLβ L h+ h.c.

• upon electroweak symmetry breaking, i.e. h acquires

vacuum expectation value ⟨h⟩, we have

cαβ
1

M
νcαL νβ L v2 + h.c.

• which corresponds to neutrino masses

Mν
αβ = cαβ

v2

M

• for a Majorana neutrino we can use a Majorana spinor ΨM of

the form (Maggiore, QFT; Willenbrock, arXiv:hep-ph/0410370v2)

ΨM =

⎛

⎝

ΨL

iσ2 Ψ⋆
L

⎞

⎠ with Ψc
M = ΨM



Weinberg operator

Mν
αβ = cαβ

v2

M
• this mass term is symmetric in generation/flavor space

Mν
αβ = Mν

βα

and for 3 generations Mν has 6 complex parameters

• for neutrino masses around 0.1 eV we need

M ∼ 3 × 1014GeV

for cαβ ∼ 1 and v = 174GeV



Weinberg operator

Mν
αβ = cαβ

v2

M
• this mass term is symmetric in generation/flavor space

Mν
αβ = Mν

βα

and for 3 generations Mν has 6 complex parameters

• for neutrino masses around 0.1 eV we need

M ∼ 3 × 1014GeV

for cαβ ∼ 1 and v = 174GeV

• however, M could also be much smaller, if cαβ are not of

order 1, or if M is only an effective mass scale



Seesaw mechanism

There are several different variants of seesaw mechanism

which are distinguished by the new particles added to the theory

• type I seesaw mechanism: we add (at least 2) fermions

νR ∼ (1,1, 0)

• type II seesaw mechanism: we add (at least 1) scalar

∆ ∼ (1,3, 1)

• type III seesaw mechanism: we add (at least 2) fermions

Σ ∼ (1,3, 0)

• further variants – see below



Seesaw mechanism

Let’s start with type I seesaw mechanism

(Minkowski, PLB67:421, 1977; Schwartz, QFT and the Standard Model)

• we add RH neutrinos νR

νR ∼ (1,1, 0)

• we know already that we can write down Yukawa interactions

yναβ LαL h̃ νβR + h.c.



Seesaw mechanism

Let’s start with type I seesaw mechanism

• we add RH neutrinos νR

νR ∼ (1,1, 0)

• we know already that we can write down Yukawa interactions

yναβ LαL h̃ νβR + h.c.

• since νR are singlets under the SM gauge group, we can

also write down an explicit mass term for them

1

2
MR

αβ ν
c
αR νβR + h.c.

which is a Majorana mass term

with MR
αβ = MR

βα



Seesaw mechanism

(Grossman, arXiv:hep-ph/0305245v1)

To better understand what happens consider 1 generation only

• the relevant terms in the Lagrangian are

−Lν = Mν
D νL νR +

1

2
MR νcR νR + h.c.

with Mν
D = yν v



Seesaw mechanism

To better understand what happens consider 1 generation only

• the relevant terms in the Lagrangian are

−Lν = Mν
D νL νR +

1

2
MR νcR νR + h.c.

with Mν
D = yν v

• conjugated RH fields transform as left-handed (LH) fields

and thus
(

νL νcR

)

Mν

⎛

⎝

νcL

νR

⎞

⎠

with

Mν =

⎛

⎝

0 Mν
D

Mν
D MR

⎞

⎠



Seesaw mechanism

• we can diagonalize the mass matrix Mν in order to find

• the mass eigenvalues: ml(ight) and mh(eavy)

• the mass eigenstates: νl(ight) and νh(eavy)

• we assume |Mν
D| ≪ |MR|



Seesaw mechanism

• we can diagonalize the mass matrix Mν in order to find

• the mass eigenvalues: ml(ight) and mh(eavy)

• the mass eigenstates: νl(ight) and νh(eavy)

• we assume |Mν
D| ≪ |MR|

and find

ml ≈
(Mν

D)2

MR
and mh ≈ MR ,

meaning

the larger MR ≈ mh (heavier νh), the smaller ml (lighter νl)

• let’s estimate Mν
D = yν v and MR

Mν
D ≈ v = 174GeV and MR ≈ 3× 1014GeV for ml ≈ 0.1 eV



Seesaw mechanism

• we can diagonalize the mass matrix Mν in order to find

• the mass eigenvalues: ml(ight) and mh(eavy)

• the mass eigenstates: νl(ight) and νh(eavy)

• we assume |Mν
D| ≪ |MR|

and find

ml ≈
(Mν

D)2

MR
and mh ≈ MR ,

meaning

the larger MR ≈ mh (heavier νh), the smaller ml (lighter νl)

as well as

νl ≈ νL −
(

Mν
D

MR

)

νcR and νh ≈
(

Mν
D

MR

)

νL + νcR



Seesaw mechanism

(Willenbrock, arXiv:hep-ph/0410370v2)

• since νR is very heavy, we can integrate νR out

• start with the equation of motion of νR

∂L
∂νR

− ∂µ
∂L

∂(∂µνR)
= 0

where L is composed of Lν and the kinetic term for νR



Seesaw mechanism

• since νR is very heavy, we can integrate νR out

• start with the equation of motion of νR

∂L
∂νR

− ∂µ
∂L

∂(∂µνR)
= 0

where L is composed of Lν and the kinetic term for νR

• for very heavy νR we can neglect the kinetic term

∂L
∂(∂µνR)

= 0

and only have to solve ∂L
∂νR

= 0 for the heavy field and plug

the solution back into the Lagrangian



Seesaw mechanism

• we can generalize

ml ≈
(Mν

D)2

MR

to the case of 3 generations of νL and N νR

Mν ≈ Mν
D (MR)−1 (Mν

D)T

where Mν
D is a complex 3×N -matrix

and MR is a complex, symmetric N ×N -matrix



Seesaw mechanism

The type I seesaw mechanism is given as Feynman diagram

(Romanino, arXiv:1201.6158v1 [hep-ph])

νL νR νR

⟨h⟩ ⟨h⟩

νLyν yν



Seesaw mechanism

The type I seesaw mechanism is given as Feynman diagram

νL

⟨h⟩ ⟨h⟩

νL



Seesaw mechanism

The type III seesaw mechanism is given by a very similar Feynman

diagram (Foot/Lew/He/Joshi, Z.Phys. C44:441, 1989)

νL Σ Σ

⟨h⟩ ⟨h⟩

νLyν yν

since νR ∼ (1,1, 0) are replaced by Σ ∼ (1,3, 0).

Remember 2× 2 = 1+ 3 in SU(2).



Seesaw mechanism

The type III seesaw mechanism is given by a very similar Feynman

diagram

νL

⟨h⟩ ⟨h⟩

νL

since νR ∼ (1,1, 0) are replaced by Σ ∼ (1,3, 0).

Remember 2× 2 = 1+ 3 in SU(2).



Seesaw mechanism

In order to represent the type II seesaw mechanism we have to

consider a Feynman diagram of a different topology

(Magg/Wetterich, PLB94:61, 1980)

νL

∆

⟨h⟩ ⟨h⟩

νLyν

µ∆

since we can consider a common vertex of the two neutrinos νL.

But, then the new particle ∆ has to be a scalar, not a fermion.



Seesaw mechanism

In order to represent the type II seesaw mechanism we have to

consider a Feynman diagram of a different topology

νL

⟨h⟩ ⟨h⟩

νL

since we can consider a common vertex of the two neutrinos νL.

But, then the new particle ∆ has to be a scalar, not a fermion.



Seesaw mechanism

Other variants of seesaw mechanism

• double seesaw mechanism

• inverse seesaw mechanism



Seesaw mechanism

Double seesaw mechanism

(Mohapatra/Valle, PRD34:1642, 1986; Mohapatra, arXiv:hep-ph/0211252v1)

• assume that you have two types of new particles

νR ∼ (1,1, 0) and S ∼ (1,1, 0)

• distinguishing between them seems artificial, since they

transform in the same way under the SM gauge group.

However, in extensions of the SM, such as SO(10) grand uni-

fied theories, they can be distinguished.



Seesaw mechanism

Double seesaw mechanism

• assume that you have two types of new particles

νR ∼ (1,1, 0) and S ∼ (1,1, 0)

• the mass matrix of νL, νR and S reads

(

νL νcR S
)

⎛

⎜

⎜

⎝

0 Mν
D 0

Mν
D 0 MνRS

0 MνRS MS

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

νcL

νR

Sc

⎞

⎟

⎟

⎠

• for the light neutrinos we find as mass

Mν ≈ Mν
D (MνRS (MS)−1 MT

νRS)
−1 (Mν

D)T



Seesaw mechanism

Double seesaw mechanism

• for the light neutrinos we find as mass

Mν ≈ Mν
D (MνRS (MS)−1 MT

νRS)
−1 (Mν

D)T

• let’s estimate the size of Mν
D, MνRS and MS

• Mν
D ∼ v, since it involves ⟨h⟩

• MνRS is of order of the grand unification scale 1016 GeV



Seesaw mechanism

Double seesaw mechanism

• for the light neutrinos we find as mass

Mν ≈ Mν
D (MνRS (MS)−1 MT

νRS)
−1 (Mν

D)T

• let’s estimate the size of Mν
D, MνRS and MS

• Mν
D ∼ v, since it involves ⟨h⟩

• MνRS is of order of the grand unification scale 1016 GeV

• for Mν ∼ 0.1 eV we need

MS ∼ 1018 GeV close to the Planck scale



Seesaw mechanism

Inverse seesaw mechanism

(Wyler/Wolfenstein, NPB218:205, 1983; Abada/Lucente, arXiv:1401.1507v2 [hep-ph])

• the crucial difference between the double seesaw

mechanism and the inverse seesaw mechanism is

scale of MS

• MS is considered to be very small



Seesaw mechanism

Inverse seesaw mechanism

• the crucial difference between the double seesaw

mechanism and the inverse seesaw mechanism is

scale of MS

• MS is considered to be very small

• let’s estimate the size of Mν
D, MνRS and MS again

• Mν
D ∼ v, since it involves ⟨h⟩

• take MS ∼ keV as example



Seesaw mechanism

Inverse seesaw mechanism

• the crucial difference between the double seesaw

mechanism and the inverse seesaw mechanism is

scale of MS

• MS is considered to be very small

• let’s estimate the size of Mν
D, MνRS and MS again

• Mν
D ∼ v, since it involves ⟨h⟩

• take MS ∼ keV as example

• for Mν ∼ 0.1 eV we need

MνRS ∼ 20TeV



Seesaw mechanism

Inverse seesaw mechanism

• the crucial difference between the double seesaw

mechanism and the inverse seesaw mechanism is

scale of MS

• MS is considered to be very small

• for MS ∼ keV and MνRS ∼ 20TeV we have

2 nearly degenerate mass eigenstates
⎛

⎝

0 MνRS

MνRS MS

⎞

⎠



Seesaw mechanism

Inverse seesaw mechanism

• the crucial difference between the double seesaw

mechanism and the inverse seesaw mechanism is

scale of MS

• MS is considered to be very small

• for MS ∼ keV and MνRS ∼ 20TeV we have

2 nearly degenerate mass eigenstates

• if MS → 0, we can define lepton number

• νL has lepton number +1

• νR has lepton number +1

• S has lepton number +1



Seesaw mechanism

Inverse seesaw mechanism

• the crucial difference between the double seesaw

mechanism and the inverse seesaw mechanism is

scale of MS

• MS is considered to be very small

• for MS ∼ keV and MνRS ∼ 20TeV we have

2 nearly degenerate mass eigenstates

• if MS → 0, we can define lepton number

• the 2 nearly degenerate states form a

pseudo-Dirac neutrino pair



Other ways to generate ν masses

Another class of models: radiative neutrino mass models

(Boucenna/Morisi/Valle, arXiv:1404.3751v2 [hep-ph]; Cai et al., arXiv:1706.08524v3 [hep-ph])

Idea:

Neutrino masses are small due to quantum effects (loops)!
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Other ways to generate ν masses

Another class of models: radiative neutrino mass models

Idea:

Neutrino masses are small due to quantum effects (loops)!



Comment on new physics scale

As we have seen, for the type I seesaw mechanism with yναβ ∼ 1

the mass scale of RH neutrinos is very large.

As a consequence,

• we can connect low energy with high energy physics

• this fits well with the ideas of a theory of grand unification,

e.g. SO(10) (Mohapatra, arXiv:hep-ph/0211252v1)

• it allows for the generation of the baryon asymmetry of the

Universe via leptogenesis, see below

• but it is not directly testable



Comment on new physics scale

In contrast to this, other mechanisms, like radiative neutrino mass

models, (Cai et al., arXiv:1706.08524v3 [hep-ph])

• permit the new particles to have much smaller masses

(around TeV scale)

• can be tested directly at colliders

• can be constrained through the search for rare processes

• often also have a Dark Matter candidate

• but they are usually difficult to reconcile with theories of

(grand) unification

• but new mechanisms for the generation of the baryon asym-

metry of the Universe have to be considered



Leptogenesis

Leptogenesis is a large category of mechanisms, where you gen-

erate the baryon asymmetry of the Universe via first generating a

lepton asymmetry.

(Fukugita/Yanagida, PLB174:45, 1986; Davidson/Nardi/Nir, arXiv:0802.2962v3 [hep-ph])

This lepton asymmetry is then (partially) converted to a baryon

asymmetry. (Khlebnikov/Shaposhnikov, NPB308:885, 1988)



Leptogenesis

Leptogenesis is a large category of mechanisms, where you gen-

erate the baryon asymmetry of the Universe via first generating a

lepton asymmetry.

This lepton asymmetry is then (partially) converted to a baryon

asymmetry.

Just to know what we are talking about

YB =
nB − nB̄

s
= (8.65± 0.09) · 10−11

(Planck (’15))



Leptogenesis

In order to produce a non-vanishing baryon asymmetry, we need

to fulfil the three Sakharov conditions

(Sakharov, Pisma Zh. Eksp. Teor. Fiz. 5:32, 1967)

• violate baryon number

• violate C and CP

• be out of thermal equilibrium



Leptogenesis

In order to produce a non-vanishing baryon asymmetry, we need

to fulfil the three Sakharov conditions

• violate baryon number

• violate C and CP

• be out of thermal equilibrium

You can ask: Can’t we have this in the SM?



Leptogenesis

In order to produce a non-vanishing baryon asymmetry, we need

to fulfil the three Sakharov conditions

• violate baryon number

• violate C and CP

• be out of thermal equilibrium

You can ask: Can’t we have this in the SM?

Short answer: Yes, but not enough!

(Rubakov/Shaposhnikov, arXiv:hep-ph/9603208v2; Trodden, arXiv:hep-ph/9803479v2)



Leptogenesis

There are many variants of leptogenesis

• unflavored leptogenesis (Fukugita/Yanagida, PLB174:45, 1986)

• flavored leptogenesis (Davidson/Nardi/Nir, arXiv:0802.2962v3 [hep-ph])

• resonant leptogenesis (Pilaftsis/Underwood, arXiv:hep-ph/0309342v3)

• Akhmedov-Rubakov-Smirnov mechanism

(Akhmedov/Rubakov/Smirnov, arXiv:hep-ph/9803255v2)

... here we focus on

unflavored leptogenesis



Leptogenesis

Ingredients for unflavored leptogenesis

• you need heavy RH neutrinos

consider the type I seesaw mechanism with RH neutrinos of

masses 1012÷14 GeV
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• you need lepton number violation

we have this, because neutrinos are Majorana particles and,

indeed,

νi R → LαL + h and νi R → LαL + hc
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• you need lepton number violation
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indeed,

νi R → LαL + h and νi R → LαL + hc

• you need C and CP violation

we have this thanks to complex Yukawa couplings yναβ



Leptogenesis

Ingredients for unflavored leptogenesis

• you need heavy RH neutrinos

consider the type I seesaw mechanism with RH neutrinos of

masses 1012÷14 GeV

• you need lepton number violation

we have this, because neutrinos are Majorana particles and,

indeed,

νi R → LαL + h and νi R → LαL + hc

• you need C and CP violation

we have this thanks to complex Yukawa couplings yναβ

• you need to be out of thermal equilibrium

that’s also OK



Leptogenesis

What do you need to compute in practice?

(Buchmüller/Di Bari/Plümacher, arXiv:hep-ph/0401240v1; Davidson/Nardi/Nir, arXiv:0802.2962v3 [hep-ph])

• the decays of νi R to LαL + h and LαL + hc

• or better to say the difference in the decay rates

Γ(νi R → LαL + h)− Γ(νi R → LαL + hc)

• then sum over α

that’s the meaning of unflavored

• lastly, normalize to the sum of the decay rates

• we get the CP asymmetry ϵi

ϵi = −
∑

α[Γ(νiR → LαL + h)− Γ(νi R → LαL + hc)]
∑

α[Γ(νiR → LαL + h) + Γ(νi R → LαL + hc)]

• we need to consider up to 1-loop diagrams



Leptogenesis

Let’s first look at the diagrams

• tree-level

×
νR 1

h

LαL



Leptogenesis

Let’s first look at the diagrams

• tree-level

×
νR 1

h

LαL

• 1-loop diagrams

νR 1

h

Lβ L
νRj

×
h

LαL

+
νR 1

h

Lβ L

νR j×

LαL

h



Leptogenesis

• we also have to take into account processes that reduce the

produced lepton asymmetry – efficiency factors ηij

10−3 ! ηij ! 1
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factor for turning the lepton asymmetry to a baryon

asymmetry which is around

10−3 in the SM



Leptogenesis

• we also have to take into account processes that reduce the

produced lepton asymmetry – efficiency factors ηij

10−3 ! ηij ! 1

• and eventually we need to take into account the conversion

factor for turning the lepton asymmetry to a baryon

asymmetry which is around

10−3 in the SM

• this means ϵi has to be of order 10−7 to 10−4



Leptogenesis

Crucial for the conversion are sphaleron processes

(Khlebnikov/Shaposhnikov, NPB308:885, 1988)



Neutrinoless double β decay

Depending on the mechanism of generating ν masses

there can be different possibilities to test the Majorana nature of

neutrinos.

The

search for neutrinoless double β decay

is the one most directly related to ν masses & lepton mixing pa-

rameters. (Dell’Oro et al., arXiv:1601.07512v2 [hep-ph])

For details see Marcos Dracos’ lectures on neutrino experiments.



Neutrinoless double β decay

Neutrinoless double β decay

(A,Z) → (A,Z + 2) + 2 e−

This process violates lepton number L by 2 units!



Neutrinoless double β decay

The relevant quantity for neutrinoless double β decay is

(PDG, Chapter 14 (’18); Dell’Oro et al., arXiv:1601.07512v2 [hep-ph])

mee =
∣

∣U2
e 1 m1 + U2

e 2 m2 + U2
e 3 m3

∣

∣

=
∣

∣

∣
c212 c

2
13m1 + s212 c

2
13 e

iα21 m2 + s213 e
i (α31−2 δ) m3

∣

∣

∣



Neutrinoless double β decay

Allowed area for IO neutrino masses can be tested in the future.



Neutrinoless double β decay

If neutrino masses are NO, mee may be very small, although neu-

trinos are Majorana particles.



Neutrinoless double β decay

At points on boundaries of areas CP is conserved.



Neutrinoless double β decay

If neutrinoless double β decay is observed,

neutrinos have (at least) a small Majorana mass of order 10−24 eV.

This observation is stated in the “black box theorem".

(Schechter/Valle, PRD25:2951, 1982; Duerr/Lindner/Merle, arXiv:1105.0901v3 [hep-ph])



Towards theory of (lepton) flavor

Most of the free parameters in the SM and in theories beyond

appear in the Yukawa interactions and thus in the fermion mass

matrices.

Understand the values of the fermion mixing angles.

Predict leptonic CP violation.

Aim:

Reduce the number of free parameters!

Make theory predictive!



Towards theory of (lepton) flavor

Aim:

Reduce the number of free parameters!

Make theory predictive!

• simple approaches are

• set some of the elements of the mass matrix to zero

(texture zeros)

(see e.g. Frampton/Glashow/Marfatia, arXiv:hep-ph/0201008v2)

Mν =

⎛

⎜

⎜

⎝

0 ⋆ 0

⋆ ⋆ ⋆

0 ⋆ ⋆

⎞

⎟

⎟

⎠



Towards theory of (lepton) flavor

Aim:

Reduce the number of free parameters!

Make theory predictive!

• simple approaches are

• set some of the elements of the mass matrix to zero

(texture zeros)

• equate some of the matrix elements

(see e.g. Grimus/Lavoura, arXiv:hep-ph/0305046v2)

• assume that the mass matrix is hermitean or symmetric

(see e.g. Ramond/Roberts/Ross, arXiv:hep-ph/9303320v1)



Towards theory of (lepton) flavor

Aim:

Reduce the number of free parameters!

Make theory predictive!

• simple approaches are textures

• more sophisticated approach is to use a symmetry



Towards theory of (lepton) flavor

Aim:

Reduce the number of free parameters!

Make theory predictive!

• simple approaches are textures

• more sophisticated approach is to use a symmetry

• symmetry principle is very successful for gauge

interactions (gauge symmetry)

• apply symmetry also to flavor sector: flavor symmetry Gf

• ... but there are many choices of Gf

• ... and not much/enough data (masses and mixing)



Towards theory of (lepton) flavor

The symmetry Gf could be ...

• ... abelian or non-abelian

abelian : parity P

non-abelian : SU(2)L



Towards theory of (lepton) flavor

The symmetry Gf could be ...

• ... abelian or non-abelian

• ... continuous or discrete

continuous : SU(2)L

discrete : parity P , charge conjugation C



Towards theory of (lepton) flavor

The symmetry Gf could be ...

• ... abelian or non-abelian

• ... continuous or discrete

• ... local or global

local : the gauge groups, like SU(3)c

global : lepton number U(1)L



Towards theory of (lepton) flavor

The symmetry Gf could be ...

• ... abelian or non-abelian

• ... continuous or discrete

• ... local or global

• ... spontaneously broken or explicitly

spontaneously broken : SU(2)L × U(1)Y to U(1)em

explicitly broken : parity P in the SM



Towards theory of (lepton) flavor

The symmetry Gf could be ...

• ... abelian or non-abelian

• ... continuous or discrete

• ... local or global

• ... spontaneously broken or explicitly

• ... broken arbitrarily or to non-trivial subgroups

arbitrarily broken : U(1)X to nothing

broken to non-trivial subgroups : SU(2)L × U(1)Y to U(1)em



Towards theory of (lepton) flavor

The symmetry Gf could be ...

• ... abelian or non-abelian

• ... continuous or discrete

• ... local or global

• ... spontaneously broken or explicitly

• ... broken arbitrarily or to non-trivial subgroups

• ... broken at low or high energies

low scales : electroweak scale O(100)GeV

high scales : seesaw scale ∼ 1014 GeV,

GUT scale ∼ 1016 GeV



Towards theory of (lepton) flavor

The symmetry Gf could be ...

• ... abelian or non-abelian

• ... continuous or discrete

• ... local or global

• ... spontaneously broken or explicitly

• ... broken arbitrarily or to non-trivial subgroups

• ... broken at low or high energies

Its maximal possible size depends on the gauge group,

e.g. in the SM without νR: Gf ⊂ U(3)5.

in SO(10): Gf ⊂ U(3).



Towards theory of (lepton) flavor

Possible continuous symmetries Gf

• U(1) symmetry (Froggatt-Nielsen symmetry)

(Froggatt/Nielsen, NPB147:277, 1979; Chankowski et al., arXiv:hep-ph/0501071v1)

Example:

3 generations of qL have charges under U(1): (−2,−1, 0)

3 generations of uR have also U(1) charges: (2, 1, 0)

Higgs field h has no U(1) charge



Towards theory of (lepton) flavor

Possible continuous symmetries Gf

• U(1) symmetry (Froggatt-Nielsen symmetry)

Example:

3 generations of qL have charges under U(1): (−2,−1, 0)

3 generations of uR have also U(1) charges: (2, 1, 0)

Higgs field h has no U(1) charge

• only the term q3L h̃ u3R is allowed

• other entries of the matrix Mu are only generated, if

U(1) is broken



Towards theory of (lepton) flavor

Possible continuous symmetries Gf

• U(1) symmetry (Froggatt-Nielsen symmetry)

Example:

3 generations of qL have charges under U(1): (−2,−1, 0)

3 generations of uR have also U(1) charges: (2, 1, 0)

Higgs field h has no U(1) charge

• only the term q3L h̃ u3R is allowed

• we need a scalar field θ with U(1) charge −1 to have,

e.g.
1

M2
q2L h̃ u2R θ2 .

If ⟨θ⟩ ≪ M ,

then Mu
22 is much smaller than Mu

33.



Towards theory of (lepton) flavor

Possible continuous symmetries Gf

• U(1) symmetry (Froggatt-Nielsen symmetry)

• mass hierarchies and order of magnitudes can be easily

explained

• breaking such a symmetry is simple

• U(1) can be easily implemented in different models

• precise values, e.g. θ23 = 45◦, difficult to achieve



Towards theory of (lepton) flavor

Possible continuous symmetries Gf

• U(1) symmetry (Froggatt-Nielsen symmetry)

• non-abelian symmetries: SU(2), SO(3) and SU(3)

(see e.g. King/Ross, arXiv:hep-ph/0108112v3)

• existence of 3 generations is understood

• precise values, e.g. θ23 = 45◦, can be explained

• breaking such a symmetry can be difficult to implement

(many fields, study of scalar potential, ...)

• not straightforward to construct such models



Towards theory of (lepton) flavor

Gf could also be a discrete symmetry.

(Ishimori et al., arXiv:1003.3552v2 [hep-th]; King/Luhn, arXiv:1301.1340v3 [hep-ph])

This choice has several advantages

• such groups have (only) small representations

• they have preferred directions

• they can be broken easily, in particular along such directions

• they are very suitable for understanding lepton mixing

• it is easy to achieve particular values for mixing parameters

However, they may not be suitable for explaining mass hierarchies

and the small quark mixing.



Towards theory of (lepton) flavor

There are many possible choices for discrete Gf

(Grimus/Ludl, arXiv:1110.6376v4 [hep-ph])

• permutation symmetries: SN and AN with N ∈ N

• dihedral symmetries: Dn and D′
n with n ∈ N

• further double-valued groups: T ′, O′, I ′

• subgroups of SU(3): series of ∆(3n2) and ∆(6n2) groups

with n ∈ N, as well as finite number of Σ groups

• subgroups of U(3) such as Σ(81) and subgroups of the listed

groups such as T7
∼= Z7 ! Z3 ⊂ ∆(147)

NB: there can be isomorphisms among the groups,

e.g. S3
∼= D3

∼= ∆(6).



Summary – Lecture 2

• there are indeed many possibilities to generate neutrino

masses

• generation of the baryon asymmetry of the Universe can

also be related to neutrino mass generation

• signal of neutrinoless double β decay would indicate lepton

number L violation by 2 units

• there are many ideas for theories beyond the SM to under-

stand fermion masses and mixing

Thank you for your attention.

Questions? Comments?
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