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Disclaimer

These 2 lectures are based on different lectures that can be found in
the Internet. Some authors are: Andreas Hocker, Helge Voss, Frederic
James, Mark Thomson, Luca Lista, Jonas Rademacker, Glen Cowen,
Bob Cousins, Kyle Cranmer, Louis Lyons, Roger Barlow, Alexander
Egorenkov, Amy Roberts and many others for the events at CERN,
INFN, IN2P3 and Universities of Cambridge, Warwick, Oxford etc.
Special thanks to members of our lab: Andrey Ustyuzhanin, Vlad
Belavin, Artem Maevskij, Alexey Boldyrev for helping in preparation
these lectures.
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Literature

› George Casella, Roger L. Berger, Statistical Inference.

› Frederick James, Statistical Methods in Experimental Physics.

› Roger Barlow, Statistics: A Guide to the Use of Statistical
Methods in the Physical Sciences.

› Glen Cowan, Statistical Data Analysis.

› Bradley Efron, Robert G. Tibrishiani, An Introduction to the
Bootstrap.

› Random Contributor at stats.stackexchange.com

Denis Derkach 4



Statistics (Applied)



Deterministic Universe

Previously (since Newton and
Laplace) the determinism ruled in
science. The universe’s fate was
considered predictable once the
complete equation of state is
known. You just need to infer the
unknown parameters from the data
obtained.
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Quantum calculations

In quantum mechanics, particles
are represented by wave functions.
The size of the wave function gives
the probability that the particle can
be found in a given position.
This already provides an intrinsic
non-determinism to the physical
description.

“Gott würfelt nicht”
(“God does not play dice”)

Albert Einstein
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Particle decays and randomness

Quantum field theory allows us to
compute cross-sections of particle
production in scattering processes,
and decays of particles.
It cannot, however, predict how a
single event will come out. We use
probabilistic sampling techniques
to simulate event-by-event
realisations of quantum
probabilities.
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Measurements

In fact, the measurement itself
processes through the interaction
of particles with active instrument
materials. This contributes to
statistical degrees of freedom
leading to measurement errors and
to genuine systematic effects (eg,
detector misalignment), that need
to be considered in the statistical
analysis
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Initial and Final State Fluctuations

Heavy-ion collisions at the LHC are modelled using hydrodynamics
(strongly interacting medium behaves like perfect fluid).
We thus have statistical mechanics that is able to combine
deterministic aspects, quantum effects and initial/final state
fluctuations.
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Applied Statistics Usage

In general:

› Probability and statistics are fundamental ingredients and tools in
all modern sciences.

› Due to the intrinsic randomness of the data, probability theory is
required to extract the information that addresses our questions.
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Probability



What is a Probability?

› The quality or state of being probable; the extent to which
something is likely to happen or be the case. (Oxford dictionaries.

› Generally, can be understood without any mathematics.

› However, mathematics is quite essential to understand the
subject.

Denis Derkach 13



Kolmogorov axioms

For event space F :

› The probability of event A ∈ F is assigned a non-negative real
number P(A), which is called the probability of .

› The probability of at least one vent from F to occur: P(F) = 1.
› (*) The probability of an empty set of events is P(∅) = 0.

› IfX1 ∈ F andX2 ∈ F are mutually exclusive, than
P(X1 +X2) = P(X1) + P(X2) (also for any countable number
of events).

Generally, other sets of axioms are possible. The main question stays:
how we interpret what stays behind our probabilities.
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Some Properties of Probability

› Joint probabilities P (A or B) and P (A and B):

P(A or B) = P(A) + P(B)P(A and B)

.

› Full probability:

P(A) =
∑
n

P(A and Bn)P(Bn),

where the whole space can be partitioned into a set of Bn,

› Conditional probability, P(A|B), means the probability that A is
true, given that B is true.
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Bayes Theorem

› For a joint probability:

P(A and B) = P(A|B)P(B) = P(B|A)P(A)
.

› Which implies:

P(B|A) = P(A|B)P(B)

P(A)
.

› Using Full probability:

P(B|A) = P(A|B)P(B)

P(A|B)P(B) + P(A|notB)P(notB)
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Example for Bayes Theorem

Suppose we have a particle ID detector designed to identify K
particles, with the property that if aK hits the detector, the probability
that it will produce a positive pulse (T+) is 0.9:

P (T+|K) = 0.9[90% acceptance]

and 1% if a noise particle goes through:

P (T+|notK) = 0.01[1% background]

Now a particle gives a positive pulse. What is the probability that it is a
K?
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Example for Bayes Theorem
The answer by Bayes Theorem:

P(K|T+) =
P(T+|K)P(K)

P(T+|K)P(K) + P(T+|notK)P(notK)

. In other words, all depends on the P(K).

K in beam P(K) = 1% P(K) = 10−6%

P(K|T+) 0.48 10−4

P(K|T−) 0.01 10−7

› Bayes theorem can be used to easily solve the problem.

› This detector is not very useful if P(K) is small.

› No interpretation of P is given.
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Problems 0, 1.

Denis Derkach 19



Probability
interpretations



Two interpretations of probability
Two types of interpretations of probabilistic processes are most
popular in applied statistics:

› in classic (or frequentist) the probability of anX event is
determined by the frequency of its occurrence:

P(X) = lim
N→∞

n

N
,

whereN is the number of tests, n is the number ofX
occurrences inN tests.

› Bayesian approach considers P(X) to be a degree-of-belief that
X is a true value.

Both approaches satisfy axioms for probability.
NB: other interpretations are also possible.
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Frequentist interpretation

› Considered to be objective.

› When interpreting randomness as an objective uncertainty, the
only possible mean of analysis is to conduct a series of
experiments.

NB1: We do not know whenN becomes large enough.
NB2: We often speak about next single events (i.e.
P(rain|tomorrow)).
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A priori and A posteriori knowledge

› Suppose we want to know the value of some unknown quantity.

› We have some knowledge obtained prior to (lat. a priori)
experiment. This may be the experience of past observations,
some model hypotheses, expectations.

› In the process of observation this knowledge is subject to gradual
refinement. After or (A posteriori) experiment we form new
knowledge about the phenomenon.

› We assume that we are trying to estimate the unknown value of θ
by observing some of its indirect characteristics x|θ.
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Bayesian approach

› The Bayesian approach assumes that randomness is a measure of
our knowledge, thus it has subjectivity inside.

› The estimates of unknown parameters are posterior distributions.

NB: A priori knowledge is subjective.
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What are the practical consequences?

› Frequentist statement: Probability of the “observed data” to occur
given a model (hypothesis): P(data|model).

› Bayesian Statement: Probability of the model given the data:
P(model|data).

P(data|model) ̸= P(model|data).

Example: P(pregnant|woman) ≈ 3% P(woman|pregnant) =?
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Bayesian vs. Frequnetist

”Bayesians address the questions everyone is interested in by using
assumptions that no one believes. Frequentist use impeccable logic to
deal with an issue that is of no interest to anyone.” –
Louis Lyons
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How does this affect the result?

› Each scientific branch has got its fashion.

› Typically in particle physics, one uses the frequentist approach
(my estimate is 80%).

› In case of a very large sample, the difference is marginal (well,
almost, see below).
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Example: throwing a coin

Example
We threw a coin 14 times, with heads occurring 10 times. What are the
chances that the next two tries will yield two heads?

Frequentist approach:
Let’s estimate the probability of the next outcome to be head :
p̂14 = 10/14 ≈ 0.71. Two consecutive outcomes: p̂2 ≈ 0.51.
Bayesian approach:
Use Bayes theorem:

P(p|data) = P(data|p)P(p)
P(data)
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Throwing a coin: Bayesian approach
Take right part:

P(data|p) =
(
14

10

)
p10(1− p)4,

The fact that we have data does not depend on p:

P(data) = const,

Since we know nothing about p:

P(p) ∼ Uniform(0, 1) ≡ Beta(p, 1, 1).

This means

P(p|data) = P(data|p)P(p)
P(data) ∼ p10(1− p)4.
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Throwing a coin: Bayesian approach

The answer is thus:

P(HH|data) =
1∫

0

P(HH|p)P(p|data)dp = const

1∫
0

p2p10(1−p)4dp.

Calculations will bring: P(HH|data) ≈ 49%.
Which is different from 51% in frequentist case! Which is correct?
https://bit.ly/1m54WgZ
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Other Concepts



Estimations
When we make an experiment we try to make our best guest of the
parameter of a theoretical distribution.

Measurement results typically follow some distribution, ie, the data do
not appear at fixed values, but are spread out in a characteristic way.
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Random Variable

A Random Variable is a variable which will take different values if the
experiment is repeated.
These values are unpredictable except that we know in probability:

P(data|parameters)

, provided any unknowns in the parameters are given some assumed
values.
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Probability density function

When the data are continuous, the probability of a random variable ξ,
P, can be rewritten as Probability Density Function, or PDF:

pξ|parameters(x)dx = P(ξ ∈ [x;x+ dx]|parameters).

We normally write something like:

P(ξ|parameters) = f(x; parameters)

.
NB: the same can be written for discrete random variables and is
called probability mass function.
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Basic Characteristics of PDF

If we have a PDF pξ(x) of a random variable ξ.

› Expectation:

E(ξ) =
∫

xpξdx,

› Variance:
Varξ(ξ) = Eξ

[
(ξ − Eξ(ξ))

2
]

,

› Higher central momenta:

µkξ = Eξ

[
(ξ − Eξξ)

3
]
,
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Properties of Expectation and Variance

› Expectation
› E(c) = c;
› E(aX + bY ) = aE(X) + bE(Y );
› For independentX and Y : E(XY ) = E(X)E(Y ).

› Variance
› Var(c) = 0;
› Var(X) ≥ 0;
› Var(X + c) = Var(X);
› Var(cX) = c2Var(X).
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Estimation Bias

We thus need to build an estimation of parameters based on our limited
sample. Normally, we put θ̂ for the estimate of θ. Estimator should be:

› Consistent θ̂n → θ;

› Unbiased bias = E(θ̂n)− θ = 0;

› EffectiveVar(θ̂n) → min.

Sadly, it’s not always true.
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Problem 2.
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Sample Mean, Variance

Even if do not know (assume) the distribution, we can already have
estimation for previously defined characteristics. If we have
Independent and identically distributed random variables (iid)Xi ∼ f

› Sample mean for expectation:

x̄ =
1

N

∑
xi

› Sample variance forVar:

s2 =
1

N − 1

∑
(xi − x̄)2

NB: while S2 is unbiased estimator of σ2, S is biased estimator of σ
(bias = σ/4n).
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Likelihood

Notice, that when we write PDF, we did not assume anything about
parameters. What if know the data:

P(data|parameters)
∣∣
dataobs.

= L(parameters)

L is called the Likelihood Function.
NB: it’s not a propability,
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Transformation Behaviour
Suppose we wish to transform variables, either the dataX → Y (X)

or the parameters θτ(θ)).
› For a likelihood function, the function values remain invariant, and
one simply substitutes the transformed parameter values:

L(θ) = L(τ(θ))

.
› However, for a PDF, the invariant is the integrated probability
between corresponding points, so one must in addition multiply by
the Jacobian of the transformationX → Y (X):

PDF (X) = J(X,Y )PDF (Y )

, where the Jacobian J is just ∂X
∂Y in one dimension (and matrix in

many dimensions).
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Bernoulli distribution

We flip a coin once with a heads rate at p,
we normally speak of a Bernoulli
distribution. For k equal to 0 (tails) or 1
(heads), we have:

f(k, p) = P(k; p) = pk(1− p)1−k

ForX ∼ Bernoulli(p):
E(X) = p;

Var(X) = p(1− p);
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Binomial distribution

We can also write down the PDF for k
heads and n− k tails:

f(k, n, p) = P(k;n, p) =
(
n

k

)
pk(1−p)n−k

ForX ∼ Binomial(p):

E(X) = Np;

Var(X) = Np(1− p);
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Poisson distribution
The Poisson distribution gives the
probability of finding exactly r events in a
given length of time, if the events occur
independently, at a constant rate. It is a
limiting case of the binomial distribution
for p → 0 andN → ∞, whenNp = µ, a
finite constant.

P(n, µ) = µn

N !
e−µ

ForX ∼ Poisson(µ):
E(N) = µ;

Var(N) = µ;
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Normal distribution

In limit of large (but finite) µ a Poisson
distribution approaches a symmetric
Gaussian distribution.

P(x;µ, σ) = 1√
2πσ

e−
(x−µ)2

2σ2

ForX ∼ Normal(µ, σ):

E(N) = µ;

Var(N) = σ2;
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Normal Distribution Connection with
others
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Central Limit Theorem
Теорема

The sum of n independent samples xi, i = 1, . . . , n drawn from any
PDF D(x) with finite expectation and variance values is Gaussian
distributed in the limit n → ∞

Example for Exponential
distribution.
This have interesting
consequences on our
mesurement process, as we
quite often operate with
repeated events.
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Cauchy (Breit-Wigner) distribution
Not all distributions are
well-behaved. The Cauchy
distribution (widely known in
physics as Breit-Wigner
distribution) is in fact a good
example of such distribution.

f(x;x0, γ) =
1

πγ

[
1 +

(
x−x0

γ

)2
] .

ForX ∼ Cauchy(x0, γ):

E(X) = ∞;

Var(X) = ∞;
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Multidimensional case



Multidimensional distributions

We often encounter situations where we have to analyze several
random variables at once. In this case, we need to analyze a more
complex entity, the multidimensional PDF P(ξ1 ≤ x1, . . . , ξn ≤ xn)

for a random vector ξ = (ξ1, . . . , ξn).
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Independence of random variables

Definition

Let random variables X and Y have a joint density p(x, y). X and
Y will be called independent if

p(x, y) = p(x) · p(y).
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Covariance

LetX,Y be two random variables.

Definition

The covariance ofX and Y will be defined:

cov(X,Y ) = E[(X − EX)(Y − EY )]
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Covariance properties

› X и Y independent, than cov(X,Y ) = 0 (not vice versa).

› cov(X,X) = VarX .

› cov(X,Y ) = cov(Y,X).

› cov(X,Y ) = E(XY )− E(X)E(Y ).

› cov(aX, bY ) = ab · cov(X,Y ).

› cov(X + a, Y + b) = cov(X,Y ).

› cov2(X,Y ) ≤ VarXVarY .
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Pearson Correlation Coefficient

Definition

ρX,Y =
cov(X,Y )√
VarXVarY

IfX,Y are independent: ρ = 0, ie, they are uncorrelated.
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Pearson coefficient values

The Pearson coefficient however can be misleading. For cases, where
nonlinearities are expected it is better to use mutual information.
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Estimate of the Pearson Correlation
Coefficient

Evident estimate:

r̂ =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2

This estimate is biased for low number of events in sample. There are

other possibilities: https://arxiv.org/pdf/1707.09037.pdf
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Problem 3.
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Wrap-up

We have seen basic methods of characterizing the distribution,
introduced likelihood and PDFs. Next we will learn how to use them.
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