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© Deep Inelastic Scattering




Infrared singularities.

@ Higher order perturbative QCD contributions still contain
divergences from infrared configurations arising in:
o real emission of a soft or collinear partons
e soft or collinear configurations of momenta in a virtual loops

@ Infrared divergences cancel order-by-order in perturbation theory
when adding real and virtual corrections:

o Kinoshita-Lee-Nauenberg (KLN) theorem for inclusive observables,
like R-ration in eTe~ collisions, jet production.

e for processes with hadron in initial /final states like DIS
(ep — €' + X), single identified hadron production in e*e™
collisions (ete™ — h+ X) remaining collinear singularitie are
universally absorbed (renormalized) in Parton Densities and
Fragmentation Functions. (QCD Factorization theorem).




The KLM theorem

Example of R— ratio in ete™
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o Infrared safety: definition of observable is unchanged by soft
emission or collinear splitting. Thus, hard final states from virtual
and real corrections are experimentally indistinguishable

2
+

@ Theorem: Infrared divergences cancel in the sum of different
subprocesses. Such observable is dominated by the physics of small
distances and can be calculated in pQCD:

O =Y cnal(pg) +O(A?/Q7)




Hadron Jets production

@ From high pt di-jets LHC data we know that quarks remain
elementary down to the scales ~ Tev—!

Highest-mass dijet event observed so far

ATLAS ~—=  S[El—

EXPERIMENT

Ist jet: pr = 520 GeV, n = -14, ¢ = -20
2nd jet: pr= 460 GeV,n=22, o= L0

o 3rd jet: pr=1306eV,n= 03,9 = 12
4th jet: pr=50 GeV, n = -10, o = -2.9




o From high p7 di-jets LHC data we know that quarks are elementary
down to the scales ~ TeV~!

@ Jet: clusters of particles moving in a common direction

e Theory: jet consists of partons
o Experiment: jet is formed by the hadrons
@ Jet algorithm (the same in theory and experiment)

e procedure to combine particles into jets, it gives some number of jets
in each event

e should be infrared safe! Do not spoil cancelation of soft/collinear
singularities in the sum of virtual corrections and real gluon
emissions.
Soft: (Ep+1 — 0): Ont1(p1,---0PnyPnt1) = On(p1, .-\ pPn)
Collinear: (ppt1 || pn):
Ont1(P1s---+PnPnt1) = On(p1. .-+ Pn+ Pnt1)




Jet algorithm

Defines the measure of distance, yj;, between the pair of particles

Introduce the cut value, yg, of the measure.

In each event combine the pair (ij) with smallest y;; into a
pseudoparticle if y; < yp with p;; = p; + p;

Repeat until all remaining pairs have y; > yp

Remaining pseudoparticles are the jets!

Example of the measure (Cone Algorithm)

vi = (i = 1) + (97 — ¢5)?
where ¢ azimuthal angle, 7 = 1/2In(E + pj)/ (E — p))- rapidity




Deep Inelastic Scattering
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DIS cross section.

@ The lepton-proton cross section is the contraction of a leptonic
tensor L, (lepton-photon coupling) and a hadronic tensor W,
(photon-hadron scattering)

@ Integrating over the phase space of X, and summing over all possible
channels- n in the final state (inclusive cross section) we have
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Hadronic tensor and DIS cross section

@ Symmetries and conservation laws constrain hadronic tensor. In the
case of photon exchange depends on two structure functions
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where p, = p, — (g—g)qy

@ It gives the DIS cross section for lepton-proton scattering

do—lp%/'X - 27.[“2
dxd@2 =~ xQ*

[(1+ @) Fx, @)~ yFu(x, @]

where F(x, Q%) = Fa(x, Q%) — 2xF1(x, Q?)




Parton Model

@ Proton made of point-like free quarks interacting incoherently with
the photon probing the proton.

@ Momentum distribution of quarks in the proton described by
probabilistic distribution function (parton distribution)- fg(B)

@ Cross section for lepton-proton scattering is a convolution of
lepton-quark scattering cross section with quark PDF.
Incoherent sum of lepton-quark scatterings:

dojp_rx dU/(H/'x
dBfy(
a'XdQ2 Z/ 'B dx dQ2




Deep Inelastic Scattering

e Quark distribution function fq(B): probability density of finding a
quark with momentum Bp inside proton with momentum p.

@ At LO: lepton-quark scattering is elastic: g+ ¢* — ¢’, and therefore
B=x

quark momentum fraction B is equal to Bjorken variable x!
@ Lepton-quark scattering cross section

dola—I'Xx

2
i ~ 2 s / dpe(B) (1+ (1= y?)?) 5(x — )

@ therefore

(x, Q2 Ze x fq(x Fi(x, Q2) =

Vanishing of F; (Callan-Gross relation): quarks spin is 1/2.
Independence on Q2: Bjorken scaling!

" lvanov Dmitry /719




@ Quark parton model prediction
Fa(x, Q%) = ) i x fq(x)
q

@ Bjorken scaling due to
scattering off pointlike
constituents

@ Small scaling violations at large
X, stronger at small x

@ Theoretically explained by NLO
QCD!
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QCD at NLO, Scalling violation.

@ NLO correction to DIS consists of two contributions:
o loop correction to LO suprocess qy* — q. It is ~ fq(x)
e gluon radiation, subprocess gy* — g+ G. Its cross section

1
~ [ dBfq(B), initial quark should have bigger energy to produce
X

extra gluon. But region of § that is closed to = x — soft limit of
real gluon emission.

@ Soft gluon singularity in virtual corrections and in real soft gluon
production both ~ fq(x) and cancel each other.

@ Collinear singularity remains! Initial states entering the collision are
distinguishable (quark with or without initial state radiation have
different momenta). KLM theorem does not apply.




Factorization

@ Small angle emission happens at long distance/time before the hard
collision, it is non-perturbative. It should be included into
redefinition of f4(x), absorbing the initial state collinear divergences
from the partonic process into quark PDF.

fc‘?are (X) . fg])hySiCiﬂ(X, VF)

@ Redefinition performed at fixed factorisation scale y g, making
parton distributions scale-dependent.
@ Essential property of perturbative QCD, ensured by

Collins-Soper-Sterman factorisation theorem:
process-independence of initial-state collinear singularities.




Deep Inelastic Scattering

The relations between the bare and renormalized quantities in the MS
scheme are

1
0 dz X X
fq(x) = fq(x, ur) — o= ( +In P;F)/?[qu(z)fq(;xPF)+qu fe(=

where 1 = 1 + 9 —In(4m) ~ 1;2411;)62,
Using independence of bare distributions on jf,

ofg.g(x) _
dlnpuz
we obtain DGLAP evolution equations




DGLAP evolution equations

{qu(z)fq(g,‘u,:) + qu(z)fg(g'VF)
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They resum initial-state collinear parton radiation at O(aZ In" Q2)




LO DGLAP kernels

14 (1-2)?
qu(z):CF%v

Pog(z) = Tg [22 + (1 *2)2} ,

N (1141z22)+ _ ¢ [% + 25(14)} ,

ﬁ+§—z+z(1—z)}+<%1<:A—%>5(1—z),

Pgg(z) =2Cy {(1 —

with + prescription

1 1
[t gl = [ dglf(x) ~ F(0)
0 0

that originate from canselation of soft gluon radiation in virtual and real emissions.




Deep Inelastic Scattering

DGLAP differential equations: solution requires boundary condition at
some low scale pig (non-perturbative input distribution)- extracted from
experiment.
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