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Frequentist Confidence
Intervals



Frequentist Confidence intervals

Definition

The confidence interval is an interval constructed using a random
sample from a distribution with an unknown parameter, such that it
contains the given parameter with a given probability. I.e

P(L ⩽ θ ⩽ U) = p.

Note that for the Bayesian approach:

P(L ⩽ θ ⩽ U |X)
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Coverage of confidence intervals

From frequentist point of view.

Definition

The coverage probability for an interval estimate is the proportion
of instances in which the sample statistic obtained from infinite
independent and identical replications of the experiment is
contained.

NB: The existence of term coverage for Bayesian varies from book to
book.
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Coverage of confidence intervals
Example
60 experiments fromN (5; 0.1). The 95% Confidence interval is given
by µ = avg ± 0.116

We have 3/60 ≈ 0.05 intervals that contain true value.Denis Derkach 6



Observed coverage

In practice, methods that have only asymptotic coverage are mainly
used. They are characterised by the observed coverage, pmethod. If
p ≥ pmethod this is called undercoverage, if p ≤ pmethod, this is
overcoverage.

NB: overcoverage is less of a problem (but this reduces the quality of
the experiment).
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Normal theory
Let us takeX ∼ N(µ;σ2). For known µ and σ2:

β = P(a ≤ X ≤ b) =

∫ b

a

N(µ, σ2)dX ′.

If µ is unknown, we can no longer numerically calculate this integral;
instead, we can estimate the probability [µ+ c, µ+ d]:

β = P(µ+ c < X < µ+ d) =

∫ µ+d

µ+c

N(µ, σ2)dX ′ =

=

∫ d/σ

c/σ

1√
2π

exp[
1

2
Y 2]dY.

which means that β = P(X − d ≤ µ ≤ X − c)
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Normal theory for interval estimation

The normal theory worked since:

› we were able to obtain a function that depends on (X − µ)2;

› the function is integrable for any limit.

These properties are fulfilled asymptotically for likelihood functions.
NB: We need more events for this.

NB2: All said is easily extrapolated for multidimensional models.
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Neyman construction

The Neyman construction for constructing frequentist confidence
intervals involves the following steps:

› Given a true value of the parameterm, determine a PDF p(x|m)

for the outcome of the experiment.

› Using some procedure, define an interval in x that has a specified
probability (say, 68%) of occurring.

› Do this for all possible true values ofm, and build a confidence
belt of these intervals.

› Compute the confidence belt given the value of x observed.

Denis Derkach 10



Neyman construction

Given a true value of the parameterm, determine a PDF p(x|m) for
the outcome of the experiment.
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Neyman construction

Using some procedure, define an interval in x that has a specified
probability (say, 68%) of occurring.
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Neyman construction

Do this for all possible true values ofm, and build a confidence belt of
these intervals.Denis Derkach 13



Neyman construction

Compute the confidence belt given the value of x0 observed.
Finally, the parameterm lies in the interval [m−;m+].
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Neyman construction: problems

Close to the boundary problems:

› empty intervals;

› ”flip-flop” in the regions close to but
not touching physics boundaries.

These problems are solved using additional constructions, for example,
a unified approach (Feldman-Cousins, see below) proposes to
supplement forbidden regions by analyzing the relative likelihood.

Denis Derkach 15



Two words on Feldman-Cousins

› introduce ordering principle:
L(x;m)

L(x;mbest)

› mostly solves the problems
mentioned before

› have difficulties addressing case of
many nuisance parameters.
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Likelihood based
confidence intervals



Motivation

In previous slides, we have seen that the normal theory allows one to
get an honest confidence interval for quantities distributed normally.
This result can be read differently: if the log-likelihood is parabolic, then
we can honestly calculate the confidence intervals.
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Likelihood independent on the
parameterization

If the likelihood function is nonparabolic,
we can (almost) always bring it to a
parabolic form by some transformation
g(θ). At the same time, the function itself
does not depend on the parameterization,
therefore we can evaluate θL and θH in
terms of lnL = lnLmax − 1/2 (for the 68
% interval).
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Nontrivial Cases

In case of a multimodal likelihood function there is a chance to find a
second peak (and use it in disjoint CL).Denis Derkach 20



Multidimensional case

The biggest problems begin in the multidimensional case.

› Use normal theory (if likelihood is Gaussian).

› Easy way to use the likelihood profile function:

g(xk) = max
xi,i̸=k

lnL(X).

This method will make it possible to analyze simple non-Gaussian
likelihoods.

› Use plugin method (create a set of toys in each point of parameter
of interest and check the likelihood value of you fit for the toy).
(recommended, but very CPU consuming).
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Systematic uncertainties

In general, each source of systematic error is characterized by its own
random variable (or rather, almost every). Suppose we know the
density of this random variable:

› Bayesian way: no problem, just marginalize credibility;

› frequentist way: the task becomes very multidimensional;

› mixed way: let’s pretend that we are Bayesians, marginalize, and
then use as a frequentist inference.

› make a combination of the profiling and classic ways.
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Hypotheses testing



Hypotheses
Statistical tests are often formulated
using a

› Null hypothesis (eg, Standard Model
(SM) background only)

› Alternative hypothesis (eg, SM
background + new physics)

Hypothesis being some statement about
parameter. To run hypothesis test we
construct some summary statistics for
both hypotheses and select a critical
value.
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Type I and II error

Null Hypothesis
TRUE FALSE
OK type 2 error (P = β)

Test accept True Negative False Negative
result reject type 1 error(P = α) OK

False Positive True Positive
We want the test to provide low α and β simultaneously. For this, we

are looking for the most powerful test.
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Neyman-Pearson test for two simple
hypotheses

Лемма (Neyman-Pearson)

H0 : θ = θ0 vs. H1 : θ = θ1
Neyman-Pearson test statistics:

T =
L(θ1)

L(θ0)
=

∏n
i=1 f(xi; θ1)∏n
i=1 f(xi; θ0)

. (1)

Suppose that H0 is rejected for T ≥ k. Choose k such that
Pθ0(T ≥ k) = α.
Then, the Neumann-Pearson criterion (based on statistics (1)) will
be the most powerful testW (θ1) among all the criteria of size α.

Denis Derkach 26



Problems

› statistics must be fully known for any x;

› we can evaluate only simple hypotheses.

Instead, we can try to approximate likelihood locally. Or take a less
powerful test (t-test, χ2 test).

Denis Derkach 27



p-value
In frequentist statistics one cannot make a probabilistic statement
about the true value of a parameter given the data. Instead:

› One defines acceptance / rejection regions of a test statistic (α).

› The measurement (data) is one specific outcome of an ensemble
of possible data.

› One accepts or rejectsH0 confidence level given by α.

› It is also possible to state how probable a particular or worse
outcome (test statistic measurement) is for a given hypothesis
(eg.H0 p-value).

One then shows the data and quotes theH0 outcome given the
required confidence level and the hypothesis p-value.
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p-value

NB: α must be predefined!
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p value

› A p-value can tell you that a difference is statistically significant,
but it tells you nothing about the size or magnitude of the
difference.

› A low p-value can give us a statistical evidence to support
rejecting the null hypothesis, but it does not prove that the
alternative hypothesis is true.

› p-value doesn’t tell you anything directly about what you’re
observing, it tells you about your odds of observing it.
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Bayes approach

We need to find:

P(hyp|data) = P(data|hyp)P(hyp)
P(data)

Normalization can be found by integrating over all possible parameter
values, which is rather difficult for some types of hypotheses. We can
study the bf Bayev factor:

R =
P(H0|data)P(H1)

P(H1|data)P(H9)

The resulting ratio can be considered as a chance of success at the
rate ofH0 versusH1. The ratio will still depend on a priori knowledge.
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Lindley paradox

Testing a point null hypothesis against a non-point alternative. For
example, coin tosses:

› H0 : p = 0.5.

› H1 : p! = 0.5.

In an experiment by Jahn, Dunne and Nelson (1987), it says that at
104490000 attempts, 52263471 eagles and 52226529 tails were
received. What does this mean in terms of statistics?
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Lindley paradox
› Frequentist approach:

z(x) =

√
N

θ0(1− θ0
)
(
1

N

∑
xi − θ0

)
,

i.e p-value: p ≪ 0.01,H0 is not supported.
› Bayes factor:

R =
P(H0|x)
P(H1|x)

P(H1)

P(H0)
≈ 19.

H0 Should be accepted!
Solution: the answers are different!

› frequentist approach says that the null hypothesis poorly explains
the data;

› Bayesian approach says that the null hypothesis describes the
data better than all alternative ones.Denis Derkach 33
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