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PDF in Multidimensional
Case



Multidimensional distributions

We often encounter situations where we have to analyze several
random variables at once. In this case, we need to analyze a more
complex entity, the multidimensional PDF P(ξ1 ≤ x1, . . . , ξn ≤ xn)

for a random vector ξ = (ξ1, . . . , ξn).
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Independence of random variables

Definition

Let random variables X and Y have a joint density p(x, y). X and
Y will be called independent if

p(x, y) = p(x) · p(y).

Denis Derkach 5



Back to 1D
We like 1D data. Remember:

› Frequentist: the more frequent - the more probable.
› Bayesian: the more I believe - the more probable.
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Covariance

LetX,Y be two random variables.

Definition

The covariance ofX and Y will be defined:

cov(X,Y ) = E[(X − EX)(Y − EY )]

Covariance coefficients we can written as matrix.
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Covariance properties

› X и Y independent, than cov(X,Y ) = 0 (not vice versa).

› cov(X,X) = VarX .

› cov(X,Y ) = cov(Y,X).

› cov(X,Y ) = E(XY )− E(X)E(Y ).

› cov(aX, bY ) = ab · cov(X,Y ).

› cov(X + a, Y + b) = cov(X,Y ).

› cov2(X,Y ) ≤ VarXVarY .

Denis Derkach 8



Pearson Correlation Coefficient

Definition

ρX,Y =
cov(X,Y )√
VarXVarY

IfX,Y are independent: ρ = 0, ie, they are uncorrelated.
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Pearson coefficient values

The Pearson coefficient however can be misleading. For cases, where
nonlinearities are expected it is better to use mutual information.
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Estimate of the Pearson Correlation
Coefficient

Evident estimate:

r̂ =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2

This estimate is biased for low number of events in sample. There are

other possibilities:
https://arxiv.org/pdf/1707.09037.pdf
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Likelihood



Likelihood

Notice, that when we wrote PDF, we did not assume anything about
parameters. What if we have the data already:

P(data|parameters)
∣∣
data obs.

= L(parameters)

L is called the Likelihood Function.
NB: it’s not a probability,
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How many events in the sample?

We consider each measurement in the sample as an independent,
identically distributed random variable, which means the PDF is a
product of individual PDFs. The same applies to likelihood:

L\(θ) =

n∏
i=1

L⟩(θ)
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Transformation Behaviour

What happens, if we transform data points or parameters?

› likelihood function remains invariant:

L(θ) = L(τ(θ))

.

› for PDF invariant is the integrated probability between
corresponding points. So, tranformation takes into account
JacobianX → Y (X):

PDF (X) = J(X,Y )PDF (Y )

, where J = ∂X
∂Y .
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Point Estimation



Problem Statement

Parametric estimation:We need to estimate the value T (θ), where T
— some function of the model parameter θ.

T : Θ → Y ,

θ 7→ T (θ).

This means that we need to have an estimate T̂ using data sampleX :

T̂ : X → Ŷ .

NB: Y and Ŷ are not always the same.
NB2: Estimates can be determined and randomized.
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Moments of distribution

Let θ = (θ1, . . . , θk)— be our parameters. We can than obtain for
1 ≤ j ≤ k the j-th moment:

αj ≡ αj(θ) = E(Xj) =

∫
xjdFθ(x),

the j-th sample moment can be obtained using formula:

α̂j =
1

n

n∑
i=1

Xj
i .
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Method of Moments
Definition

θ̂n — parameter estimate of θ = (θ1, . . . , θk) if
α1(θ̂n) = α̂1,

α2(θ̂n) = α̂2,

· · ·

αk(θ̂n) = α̂k.

Example
LetX1, . . . , Xn ∼ Bernoulli(p), then

› α1 = E(X) = p,

› α̂1 = n−1
∑n

i=1Xi,

› then p̂n = 1
n

∑n
i=1Xi.
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Example
LetX1, . . . , Xn ∼ N (µ, σ2), than

α1 = E(X1) = µ,

α2 = E(X2
1 ) = Var(X1) + (E(X1))

2 = σ2 + µ2,

µ̂ =
1

n

n∑
i=1

Xi,

σ̂2 + µ̂2 =
1

n

n∑
i=1

X2
i .

Solving the system of equations:

µ̂ = Xn и σ̂2 = 1
n

∑n
i=1(Xi −Xn)

2.
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Теорема

Let θ̂n — estimate of parameter θ that uses MoM, than (under
certain conditions):

1. θ̂n
P−→ θ when n → ∞;

2. Estimate is asymptotically normal, i.e.
√
n(θ̂n − θ)⇝ N (0,Σ),

where Σ = gE(XXT )gT , X = (X1, X2, . . . , Xk)T ,
g = (g1, . . . , gk) и gj = ∂α−1

j (θ)/∂θ.

NB: The second bullet can be used to find confidence intervals.
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Problem 1.
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Comments about Method of Moments

› sub-optimal;

› easy to use;

› often use to have a preestimate of parameters for more precise
methods.
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Maximum Likelihood Estimator

Definition

Maximum Likelihood Estimator (MLE) is defined as the estimate θ̂n
of parameter θ, which maximizes likelihood:Ln(θ) (with n being the
number of events in a sample).
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Practicalities
Example
Let us have an exponential distribution (say, we want to study a
lifetime of a particle):

f(t, τ) ∼ 1

τ
e−t/τ .

And a sample of i. i. d.measurements t1, . . . , tn ∼ f .
The likelihood function in this case is: Ln(τ) =

∏n
i=1

1
τ e

−t/τ . Taking a

logarithm: ℓn(τ) =
∑
i=1

nf(t; τ) =
n∑

i=1

(
ln 1

τ − ti
τ

)
.

Find maximum of L (taking into account that log is monotonic):

∂Ln(τ)

∂τ
= 0⇝

n∑
i=1

(
−1

τ
+

ti
τ2

)
= 0⇝ τ̂ =

1

n

n∑
i=1

ti.
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Some MLE properties

1. MLE is consistent: θ̂n
P−→ θ.

2. MLE does not depend on the parameterisation: θ̂n — MLE for θ,
than g(θ̂n)— MLE for g(θ);

3. MLE is asymptotically normal: (θ̂ − θ∗)/ŝe⇝ N (0, 1);

4. MLE is asymptotically optimal.
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Example of MLE:

Find µ̂ and σ̂ for Normal function with number of events in sample n:

f(x;µ, σ) =
1√
2πσ

e−
(x−µ)2

2σ2 .

Rewrite as log-likelihood:

ℓn(µ, σ) =

n∑
i=1

(
ln

1√
2π

− lnσ − (x− µ)2

2σ2

)
Take derivatives:

∂ℓn
∂µ

=

n∑
i=1

xi − µ

σ2
∂ℓn
∂σ

=

n∑
i=1

(
(xi − µ)2

2σ4
− 1

2σ2

)
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Example of MLE:

Thus:

µ̂ =
1

n

n∑
i=1

xi,

and:

σ̂ =
1

n

n∑
i=1

(xi − µ̂)2

MLE estimate is not biased σ!
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Signal and Background MLE
› usually samples contain signal and background;
› introduce mixed likelihood for every event:

Li(µ) = µS · ps(xi) +B · pb(xi)

, ps,b are pdf’s for signal and background, S and B are relevant
number of events.

› add normalisation term exp[−ν)ν
n

n! , where ν̂ is an estimate of n
to account for the possibility of varying events in the sample.

We get:

L(µ) = exp[−ν)
νn

n!

n∏
i=1

(µS · ps(xi) +B · pb(xi))

NB: More complications: nuisance parameters, many background
contributions, normalisation that depends on parameters etc.Denis Derkach 29



Problem 2.
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How to test your maximum likelihood fit

› Try on several simulated samples (if available).

› Generate samples using model and fit them back (make it at least
100 times).

› Perform a goodness-of-fit test (for example, check χ2 of the final
parametrisation vs. data).
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Maximum aposteriori estimate, MAP

Formally, MLE estimates the parameter values, for which our data is
the most probable.

f(X; θ) ∼ f(X|θ).

In fact, we normally ask, which are the values of the parameters that
are most probable:

f(θ|X) =
f(X|θ)g(θ)

h(X)
,

for f , g и h – relevant pdfs.
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Maximum aposteriori estimate

Definition

Maximum aposteriori estimate (MAP) is an estimate θ̂n for
parameter θ, that maximuses f(θ|X).
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Connection to MLE

MAP and MLE are evidently connected:

f(θ|X) =
f(X|θ)g(θ)

h(X)
=

∏n
i=1 f(Xi; θ)g(θ)

h(X)
∼ const

n∏
i=1

f(Xi; θ)g(θ)

Taking log:

log f(θ|X) = log(g(θ)) +

n∑
i=1

log(f(Xi|θ)).

Basically, both methods give the same estimate modulo logarithm of
apriori knowledge log(g(θ)).
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Conjugate priors

Which g(θ) to use?

› any;

› normally, it’s easier if the prior is coming from the same functional
form as a posterior (a.k.a conjugate distributions).

The values of the parameters of conjugate distributions make sense of
previous measurements.
See Wikipedia list
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Thoughts on MAP

› allows you to take into account previous knowledge;

› gives a point estimate (thus not strictly Bayesian);

› depends on parameterization;

› for relatively large n coincides with MLE (and also in the case of
g(X) = rmconst!).
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Interval estimation



Interval estimation: motivation

› Usually we try to measure a parameter on a final sample.

› It would be interesting to understand our confidence in the result.

That is why we need interval estimation.
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Bayes vs. Frequentist

As always, we have different approaches to solving the problem,
depending on the interpretation of probabilities.
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Bayesian credibility
intervals



Credibility interval

Definition

A Bayesian p confidence interval is the [L,U ] interval to which the
value of the θ parameter belongs with the posterior probability p

P(L ⩽ θ ⩽ U |X) = p.

NB: normally written as Cr.L. (but often C.L. is used).
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Bayesian credibility interval

1− α =

∫ θup

θlo

p(θ|X)dθ

How to choose θlo и θhi:

› HPD (highest probability density) –
only the highest probabilities to be
chosen.

› Central interval – start integration
from the peak.

› One sided interval – integrate from
infinity.
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Close to the boundary behavior

The behavior near the boundaries as
obtained in the Bayesian approach is very
simple - we use an apriori distribution with
information about the physical boundary.

The results obtained are very logical if we
use a flat prior distribution with a clear left
border.
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Nuisance parameters

Definition

A nuisance parameter is any unknown parameter of the probability
distribution in a statistical problem related to the study of other
parameters of this distribution.

In the Bayesian approach, the inclusion of interfering parameters also
occurs in a simple way (if we know its distribution P (b), simply take
integral:

P(θ|data) =
∫
b

P(data|θ, b)P(θ)
P(data) P(b)db.
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Measurement Combination

Another good feature of the Bayesian approach is a simple way
combine several measurements:

P(θ|data) = P1(data|θ) . . .PN (data|θ)P(θ)
P(data) .

It is enough to use prior distribution only once.
NB: it is sometimes useful to count the work in several passes.
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Problem: prior probability

n the process of determining the boundaries of the experiment, we
cared only about the left boundary. And what happens to the right?
Should she be at infinity? in this case:∫ a

b

Uniform(x)dx = 0,∀a, b

That is, we must also limit the right side, and we don’t have information
about it (or almost no information).

In addition, the use of a flat prior distribution is quite arbitrary.
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Jeffreys prior probability

For each family of curves, the Jeffreys prior probability can be
calculated from this condition. For example, for the Poisson
distribution, Jeffreys proposed to make it invariant to scale.∼ 1/µ.
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Jeffreys prior probability

Now, typically it is preferred to use distributions that minimize Fisher
information for a given parameter. For the Poisson distribution:

P (µ) =
1
√
µ
.

This does not produce correct intervals for noisy background. In order
to correct this, we need to use:

P(µ) = 1√
µ+ b

.

Which means that our prior probability depends on our knowledge of
background :-(
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Frequentist Confidence
Intervals



Frequentist Confidence intervals

Definition

The confidence interval is an interval constructed using a random
sample from a distribution with an unknown parameter, such that it
contains the given parameter with a given probability. I.e

P(L ⩽ θ ⩽ U) = p.

Note that for the Bayesian approach:

P(L ⩽ θ ⩽ U |X)
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Coverage

The method that allows you to construct an interval (θa; θb) such that
P(θa ≤ θ0 ≤ θb) = β, where θ0 is the real value of the parameter, has
the property cover.

Frequentist intervals will fluctuate with new samples. Therefore,
coverage is defined as the proportion of intervals that contains the
current value of θ0.

NB: the existence of coverage for the Bayesian approach is
questionable.
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Coverage of confidence intervals

In practice, methods that have only asymptotic coverage are mainly
used. If P ≤ β this is called undercoverage, if P ≥ β, this is
overcoverage.
vspace 10pt
NB: overcoverage is less of a problem (but from the point of view of
the experimenter, this reduces the quality of the experiment).
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Normal theory
Let us takeX ∼ N(µ;σ2). For known µ and σ2:

β = P(a ≤ X ≤ b) =

∫ b

a

N(µ, σ2)dX ′.

If µ is unknown, we can no longer numerically calculate this integral;
instead, we can estimate the probability [µ+ c, µ+ d]:

β = P(µ+ c < X < µ+ d) =

∫ µ+d

µ+c

N(µ, σ2)dX ′ =

=

∫ d/σ

c/σ

1√
2π

exp[
1

2
Y 2]dY.

which means that β = P(X − d ≤ µ ≤ X − c)
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Normal theory for interval estimation

The normal theory worked since:

› we were able to obtain a function that depends on (X − µ)2;

› the function is integrable for any limit.

These properties are fulfilled asymptotically for likelihood functions.
NB: We need more events for this. NB2: All said is easily extrapolated

for multidimensional models.
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Neyman construction

The Neyman construction for constructing frequentist confidence
intervals involves the following steps:

› Given a true value of the parameter θ, determine a p.d.f. f(x; θ)
for the outcome of the experiment. Often x is an estimator for the
θ.

› Using some procedure, define an interval in x that has a specified
probability (say, 90%) of occurring

› Do this for all possible true values of θ, and build a confidence belt
of these intervals

› Compute the confidence belt given the value of x.
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Neyman construction

x

�

�0

�1

�2

f(x|�)
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Neyman construction: problems

Close to the boundary problems:

› empty intervals;

› ”flip-flop” in the regions close to but
not touching physics boundaries.

These problems are solved using additional constructions, for example,
a unified approach (Feldman-Cousins, see below) proposes to
supplement forbidden regions by analyzing the relative likelihood.
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Likelihood based
confidence intervals



Motivation

In the previous slides, we have seen that the normal theory allows one
to get honest confidence intervals for quantities distributed according
to Gauss. This result can be read differently: if the likelihood is
parabolic, then we can honestly calculate the confidence intervals.
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Likelihood independent on the
parameterization

If the likelihood function is nonparabolic,
we can (almost) always bring it to a
parabolic form by some transformation
g(θ). At the same time, the function itself
does not depend on the parameterization,
therefore we can evaluate θL and θH in
terms of lnL = lnLmax − 1/2 (for the 68
% interval).
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Nontrivial Cases

In case of a multimodal likelihood function with such a construction,
there is a chance to find a second peak (and use it in CL definition).Denis Derkach 61



Multidimensional case

The biggest problems begin in the multidimensional case.

› Use normal theory (if likelihood is Gaussian).

› Easy way to use the likelihood profile function:

g(xk) = max limitsxi,i nek lnL(X).

This method will make it possible to analyze simple non-Gaussian
likelihoods.

› Use plugin method (create a set of toys in each point of parameter
of interest and check the likelihood value of you fit for the toy).
(recommended).
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Systematic uncertainties

In general, each source of systematic error is characterized by its own
random variable (or rather, almost every). Suppose we know the
density of this random variable:

› Bayesian way: no problem, just marginalize credibility;

› classic way: the task becomes very multidimensional;

› mixed way: let’s pretend that we are Bayesians, marginalize, and
then use as a classic conclusion.

› make a combination of the profiling and classic ways.
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Hypotheses testing



Hypotheses
Statistical tests are often formulated
using a

› Null hypothesis (eg, Standard Model
(SM) background only)

› Alternative hypothesis (eg, SM
background + new physics)

Hypothesis being some statement about
parameter. To run hypothesis test we
construct some summary statistics for
both hypotheses and select a critical
value.
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Type I and II error

Null Hypothesis
TRUE FALSE
OK type 2 error (P = β)

Test accept True Negative False Negative
result reject type 1 error(P = α) OK
result reject False Positive True Positive
We want the test to provide low α and β simultaneously. For this, we

are looking for the most powerful test.
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Neyman-Pearson test for two simple
hypotheses

Лемма (Neyman-Pearson)

H0 : θ = θ0 vs. H1 : θ = θ1
Neyman-Pearson test statistics:

T =
L(θ1)

L(θ0)
=

∏n
i=1 f(xi; θ1)∏n
i=1 f(xi; θ0)

. (1)

Suppose that H0 is rejected for T ≥ k. Choose k such that
Pθ0(T ≥ k) = α.
Then, the Neumann-Pearson criterion (based on statistics (1)) will
be the most powerful testW (θ1) among all the criteria of size α.
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Problems

› statistics must be fully known for any x;

› we can evaluate only simple hypotheses.

Instead, we can try to approximate likelihood locally.
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p-value
In frequentist statistics one cannot make a probabilistic statement
about the true value of a parameter given the data. Instead:

› One defines acceptance / rejection regions of a test statistic (α).

› The measurement (data) is one specific outcome of an ensemble
of possible data.

› One accepts or rejectsH0 ith confidence level given by α.

› It is also possible to state how probable a particular or worse
outcome (test statistic measurement) is for a given hypothesis
(eg.H0 p-value.

One then shows the data and quotes theH0 outcome given the
required confidence level and the hypothesis p-value.
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p-value

NB: α must be predefined!
NB2: p-value does not say anything about significance of your answer!
NB3: p-value does not say anything about probability of your
hypothesis.
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Bayes approach

We need to find:

P(hyp|data) = P(data|hyp)P(hyp)
P(data)

Normalization can be found by integrating over all possible parameter
values, which is rather difficult for some types of hypotheses. We can
study the bf Bayev factor:

R =
P(H0|data)P(H1)

P(H1|data)P(H9)

The resulting ratio can be considered as a chance of success at the
rate ofH0 versusH1. The ratio will still depend on a priori knowledge.
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Lindley paradox

Testing a point null hypothesis against a non-point alternative. For
example, coin tosses:

› H0 : p = 0.5.

› H1 : p! = 0.5.

In an experiment by Jahn, Dunne and Nelson (1987), it says that at
104490000 attempts, 52263471 eagles and 52226529 tails were
received. What does this mean in terms of statistics?
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Lindley paradox
› Frequentist approach:

z(x) =

√
N

θ0(1− θ0

(
1

N

∑
xi − θ0

)
,

i.e p-value: p ≪ 0.01,H0 is not supported.
› Bayes factor:

R =
P(H0|x)
P(H1|x)

P(H1)

P(H0)
≈ 19.

H0 Should be accepted!
Solution: the answers are different!

› frequentist approach says that the null hypothesis poorly explains
the data;

› Bayesian approach says that the null hypothesis describes the
data better than all alternative ones.Denis Derkach 73
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