Testing the lepton universality in the W-boson decay with the ATLAS detector

Baikal Summer School 2019, 14th July, Bolshie Koty

Philipp König

Bonn-Cologne Graduate School of Physics and Astronomy GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Physik bei höchsten Energien mit dem ATLAS-Experiment am LHC

Open Questions of the Standard Model

- down top Why is there t d charm strange How can we more matter \mathbf{C} S describe gravity? than anti-matter? g Y b U photon bottom (\mathbf{T}) W Ζ r-neutrino tau μ $\mathcal{V}_{\mathfrak{u}}$ u-neutrino muon e Ve. What is dark electron e-neutrino matter made of?
 - Precision measurements of the SM are interesting approach to search for BSM physics

Lepton Universality

- Electroweak interaction preserves lepton universality in the SM
- Higgs mechanism breaks lepton universality by different couplings to leptons (depending on the mass)
- Is there an additional mechanism for lepton universality breaking?

Lepton Universality

W ⁺ DECAY MODES	F	Fraction (Γ _i /Γ)	Confidence level	(MeV/c)
$\ell^+ \nu$	[<i>b</i>]	(10.86± 0.09) %		_
$e^+ \nu$		(10.71 ± 0.16) %		40189
$\mu^+ u$		(10.63± 0.15) %		40189
$ au^+ u$		(11.38 \pm 0.21) %		40170

- No experimentally observed violation of lepton universality
- 2 sigma effect seen by LHCb

- $\mathscr{B}(\overline{B}^0 \to D^{*+} \tau^- \overline{\nu}_{\tau}) / \mathscr{B}(\overline{B}^0 \to D^{*+} \mu^- \overline{\nu}_{\mu}) (\underline{\operatorname{arXiv:}} 1506.08614)$

 $B^{0} \rightarrow K^{*0} \ell^{+} \ell^{-} (arXiv:1705.05802)$

The ATLAS Detector

Motivation

- 2 sigma discrepancy
- Excellent possibility to test SM and lepton universality
- Indicator for BSM physics
- Parameter of Interest (POI):

 $BR(W \to \tau \nu_{\tau})/BR(W \to \mu \nu_{\mu})$

W-Boson Decay

W-Mass Measurement

- Starting point: W-mass measurement with the ATLAS detector at 7 TeV (<u>arXiv:1701.07240</u>)
- Very similar analysis

Measurement of the W-boson mass in pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector

The ATLAS Collaboration

A measurement of the mass of the W boson is presented based on proton-proton collision data recorded in 2011 at a centre-of-mass energy of 7 TeV with the ATLAS detector at the LHC, and corresponding to 4.6 fb⁻¹ of integrated luminosity. The selected data sample consists of 7.8×10^6 candidates in the $W \rightarrow \mu\nu$ channel and 5.9×10^6 candidates in the $W \rightarrow e\nu$ channel. The W-boson mass is obtained from template fits to the reconstructed distributions of the charged lepton transverse momentum and of the W boson transverse mass in the electron and muon decay channels, yielding

> $m_W = 80370 \pm 7 \text{ (stat.)} \pm 11 \text{ (exp. syst.)} \pm 14 \text{ (mod. syst.)} \text{ MeV}$ = 80370 ± 19 MeV,

Results from W-Mass Measurement

Event Selection of W-Mass Measurement

Cut Stage	Electron Channel	Muon Channel	
Trigger	Single electron trigger (20/22 GeV)	Single muon trigger (18 GeV)	
	Exactly one well reconstructed electron/muon		
	$p_{\rm T}^l > 30 { m GeV}$		
Signal cuts	$p_{\rm T}^W < 30~{ m GeV}$		
	$m_{\rm T}^W > 60 { m ~GeV}$		
	$p_{\rm T}^{\rm miss} > 30 {\rm GeV}$		

Measurement of the Ratio of the Branching Ratios

- Select lepton final state due to
 - high trigger efficiency
 - cancellation of many systematic uncertainties
- Parameter of Interest (POI):

$$R_{\tau\mu}^{SIG} = \mathscr{B}(W \to \tau \nu_{\tau})/\mathscr{B}(W \to \mu \nu_{\mu})$$

Interesting Variables

- Shape difference between tau and muon signal as large as possible
- Difference is coming from additional neutrino in tau process

Results for Fitting pT

- Agreement between data and MC is 1 as Asimov Data (sum of all samples) was used as Data
- One scale factor ($R_{\tau\mu}^{SIG}$) is 100% correlated with the branching ratio itself

Fit Results for pT

Relax Cuts

Need to further reduce the uncertainties

- Visible shape difference due to lifetime of tau lepton (decays after 87µm)
- Completely independent from kinematic quantities
- Needs to be explored in detail
- 2D Histogram unrolled in one dimension (due to technical limits of HistFitter)

2D Fit

	Muons	Electrons	Combined
1D Fit	4.8 %	5.4 %	3.6 %
Binning 1	2.5 %	4.3 %	2.2 %
Binning 2	2.9 %	4.3 %	2.4 %
Binning 3			2.1 %
Relaxed Cuts Binning 3	0.6 %	1.2 %	0.5 %

• numbers provided by Hannah Schmitz

Summary and Outlook

- Precision measurement of the lepton universality is excellent possibility to test the SM and an indicator for BSM physics
- Analysis based on W-Mass measurement from ATLAS at 7 TeV
 - ➡ Joint the re-analysis effort for even better precision
- Fully consistent setup and a fully functional fit including all systematics for muons
- Relaxed cuts and/or adding d0 improve the sensitivity of the branching ratio measurement
- Include electron channel with all systematics to the fit
- Work on vertexing

The End

I

Ħ

罪

H

-

E

H

Ħ

H

H

I

Ħ

att

A

7 7 7 7

I

A

I

Ŧ

A

H

Ħ

Ŧ

H

Ħ

Production of W-Bosons at the LHC

Results from W-Mass Measurement

- MC template fit for different masses in pT or mT
- Fitted positive and negative leptons separately

Results from W-Mass Measurement

Introduction to fit setup

- implemented histogram-based fit in HistFitter
- multi-bin fit of $\, p_{\mathrm{T}}^{\mu^+}$ in 20 bins from 30 to 50 GeV
- H_data != mu_tau*H_tau + mu_mu*H_mu + mu_B*H_B + syst

= mu_mu*Rtaumu*H_tau + mu_mu*H_mu + mu_mu*Rbkgmu*H_B + syst

= mu_mu*(Rtaumu*H_tau + H_mu + Rbkgmu*H_B) + syst

- so we have one overall normalisation scale factor and two "branching ratio" scale factors
- used AsimovData (so summed up background without smearing, fit should not pull the branching ratio)

Relax Cuts

Ranking plots

 $\Delta R \tau \mu_{sig}$

 $\Delta R \tau \mu_{sig}$

Extrapolated systematic uncertainties

- Fitted polynomial function 2nd order to the first half of the histogram
- 1st approach: Take fit function as systematic unc. for pT values < 30 GeV
- 2nd approach: Re-evaluate the systematics in the range between 30-40 GeV by taking the mean of the old systematic and the fit function

- Error on POI is 14.3%
- Statistical error is 4.8%

- Error on POI is 17.4%
- Statistical error is 5.8%

Maximum Likelihood

Idea: Maximize $\log L(\mu)$ in all bins²

$$-\log L(\mu) = (\mu S + B) + \log n! - \sum_{e=1}^{n} \log(\mu Sf_s(x_e) + Bf_B(x_e))$$

 Attention: The used Likelihoods depend on normalization factors and statistical uncertainties

²Source [2]

▲□▶▲□▶▲≡▶▲≡▶ ◎ ● ●

Maximum Likelihood

Idea ¹: Find probability model for receiving *n* events in the data where the variable *e* has a value x_e

$$P(x_1 \dots x_n | \mu) = \operatorname{Pois}(n | \mu S + B) \prod_{e=1}^n \left(\frac{\mu S \cdot f_S(x_e) + B \cdot f_B(x_e)}{\mu S + B} \right)$$

S: number of signal events B: number of background events $f_S(x)$ and $f_B(x)$: signal and background shape μ : signal strength

¹Source [2]

▲□▶▲□▶▲≡▶▲≡▶ ▲□▼

Neural Network

- 1 hidden layer with 50 nodes
- 14 input variables
- Desired output should be 0 for muons and 1 for taus

Pt of positive muons

alpha_Lumi	0.00 ± 1.000000	0.00 ± 0.999991
mu_SIG	1.00 ± 0.000100	1.00 ± 0.019008
Rtaumu_SIG	1.00 ± 0.000100	1.00 ± 0.007869

Table: Floating fit parameters for the analysis involving signal region SR, before (left) and after (right) the background-only fit. The quoted fit errors come from HESSE.

Neural Network with 14 Input Observables

Parameter	initial value and error	fitted value and error
alpha₋Lumi	0.00 ± 1.000000	0.00 ± 1.000007
mu_SIG	1.00 ± 0.000100	1.00 ± 0.019009
$Rtaumu_SIG$	1.00 ± 0.000100	(1.00 ± 0.007528)

Table: Floating fit parameters for the analysis involving signal region SR, before (left) and after (right) the background-only fit. The quoted fit errors come from HESSE.