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Neural Network
Construction



The logistic regression model decision
rule

*+ True labels
o True labels

X2
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The logistic regression model decision
rule
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The decision boundary for this particular dataset could be put in
giffareatrpoints.



How things work?

Remember a simple regression problem:

Yy =Wy + wixy

Schematically, it can be written out as (let’s put x,=1):




How things work?

Remember a simple regression problem:

Yy =Wy + wixy

Schematically, it can be written out as (let’s put x,=1):




More observables”

What if regression will get multiple inputs.

Yy =Wy + WX + wWhX,

Fairly easy, we can represent it in a graphical way:




More Regressions”

We can add a similar to x, term a,, we also assign weights v here.

y = bi(wy + wix; + wyx,) + by

To represent a final calibration.




What else can be added?

We can add a second regression

y = bz(VO + I/l.xl + I/2X2) + bl(WO -+ Wl.xl -+ WzXz) + bo




NonLinearities?

We can add a second regression

V= sz(I/O + I/l.xl -+ I/2X2) ~+ bIU(WO + Wlxl -+ W2.X2) + bo




NonLinearities?

We can add a second nonlinearity?

y = 6(by,o(vy + VX + UyX,) + bjo(wy + wix; + wyoX,) + by)




Neural Network!

Classification

Neural Hidden
Layer

e*e Jrue labels 1
e°o [rue labels O

So we just need to have a very big hidden layer?
(and in fact just use many logistic regressions)?



Growing Deeper

Simple Neural Network Deep Learning Neural Network
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How to fit all the weights?



Training Neural Networks

LeCun et al., "Backpropagation Applied to
Handwritten Zip Code

Recognition," Neural Computation, 1, pp.
541-551, 1989

10 output units @ -
fully connected

~ 300 links
layer H3 oooooooo
30 hidden units fully connected
~ 6000 links
layer H2 =/
12 x 16=192
H2.1 H2.1 .
hidden units o ~ 40,000 links
from 12 kernels
5x5x8
layer H1 - o

12 x 64 = 768 | “fe¥) -

hidden units X
H1.1 H1.1

~20,000 links
from 12 kernels
8x5

256 input units




Training Neural Networks

label = 5

label =

N 0 B

label = 0

label = 1

label = 4

label = 3

label = 1

label = 1

label = 9

label = 4

label = 1

label = 9

Most probably, we we
will train a supervised
classification, which
means that we not
only need images, but
also labels.



Single digit
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Each digit is represented by 28X28 point picture with different brightness.

We can write it as a vector.



Forward propagation

We have an untrained network and forward propagate an image, which is
known to be “2” (remember, we have labeled dataset)

n_units n_units n_out

Output

Input
Classification result

MNIST image

[0.1, 0.2, 0.2, 0.2, 0.1, 0.3, 0.5, 0.3, 0.2]

We know that that
the ideal output
should look like this:

' - ‘ f | [0.,0,1,0,0.0,0,0, 0]
11 12 13
Input layer Hidden layer Output layer

https://www.youtube.com/watch?v=qtyiJTMcxao



https://www.youtube.com/watch?v=qtyiJTMcxao
https://www.youtube.com/watch?v=qtyiJTMcxao

Backpropagation

Remember that we started from regression.

n_units n_units n_out

Output

Input
Classification result

MNIST image

[0.1, 0.2, 0.2, 0.2, 0.1, 0.3, 0.5, 0.3, 0.2]

We know that that
the ideal output
should look like this:

|

11 12 13
Input layer Hidden layer Output layer

[0.,0,1,0,0.0,0,0, 0]



Backpropagation

In fact, we know this shape, it looks like
regression diagram.

‘ We also know how to obtain a good regression
and update weights.

:\ output,=1  But we know more than this.
'/ We know that the image is in fact 2.

Hidden layer 2




Backpropagation

‘\
®- output 0
7

Hidden layer 2

In fact, we know this shape, it looks like
regression diagram.

We also know how to obtain a good regression
and update weights.

But we know more than this.
We know that the image is in fact 2.

We know even more than this: this number is
not 3.

We thus can simultaneously update the weights
using a rule:
0<

Aw = g—
ow

& is called a learning rate



Backpropagation

In fact, to avoid our neural network to be trained to give only ”2”, we need to
insert several different digits.

n_units n_units n_out

Output
Classificauon resuit

) [0,0,1,0,0,0,0,0,0,0]

Input
MNIST image

4

]. \ -'r
11 12 13
Input layer Hidden layer Output layer

We thus produce a new set of weights tor the last hidden layer.



Backpropagation

Now with previous layer, we can update the values in the same manner we did before.

Fixed in previous step

n_units n_units n_out

Output

Input
Classification result

MNIST image

[0,0,1,0,0,0,0,0,0, 0]

[ o | Il
11 12 13
Input layer Hidden layer| Output layer




Backpropagation

Fixed in previous steps

n_unit

Input
MNIST image

Output
Classification result

11
Input layer

19



Figures of merits



Classification quality evaluation: accuracy

¢
> Given a labeled sample X* = {(Xi,yi)}izl, yi € {—1,+1}, and
some candidate h, how well does / perform on X2
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Classification quality evaluation: accuracy
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> Let the thresholded decision rule be a(z) = [h(z) > t] (t:
hyperparameter)
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Classification quality evaluation: accuracy

¢
> Given a labeled sample X* = {(Xi,yi)}z.zl, yi € {—1,+1}, and
some candidate h, how well does / perform on X2

> Let the thresholded decision rule be a(z) = [h(z) > t] (t:
hyperparameter)

> Obvious choice:

‘
accuracy(a, Xe E a(x;) = yil

Denis Derkach 7



Classification quality evaluation:
confusion matrix

Labely =1 Label y = —1
Decision a(x) = 1 True Positive (TP) | False Positive (FP)
Decision a(xz) = —1 | False negative (FN) | True Negative (TN)

Denis Derkach




Classification quality evaluation:
confusion matrix

Labely =1 Label y = —1

Decision a(x) = 1 True Positive (TP) | False Positive (FP)

Decision a(xz) = —1 | False negative (FN) | True Negative (TN)

N are often more informative:
FP
False Positive Rate aka FPR =
alse Positive Rate aka PN
TP

True Positive Rate aka TPR = TPLEN
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Classification quality evaluation:
confusion matrix

Labely =1 Label y = —1

Decision a(x) = 1 True Positive (TP) | False Positive (FP)

Decision a(xz) = —1 | False negative (FN) | True Negative (TN)

N are often more informative:
FP
False Positive R ka FPR =
alse Positive Rate aka PN
True Positive Rate aka TPR = TP
TP+ FN’

> While accuracy can be expressed, too
TP + TN
TP +FP+FN+ TN

accuracy =

Denis Derkach



Classification quality: the receiver
operating curve

> Often h(x) is more valuable than its
thresholded version
a(x) = [h(z) > t]

Denis Derkach



Classification quality: the receiver
operating curve

> Often h(x) is more valuable than its
thresholded version
a(x) = [h(z) > 1]

> Consider two-dimensional space with
coordinates (TPR(t), FPR(t)),
corresponding to various choices of
the threshold ¢
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operating curve

> Often h(x) is more valuable than its
thresholded version
a(x) = [h(z) > 1]

> Consider two-dimensional space with
coordinates (TPR(t), FPR(t)),
corresponding to various choices of
the threshold ¢

> The plot TPR(t) vs. FPR(t) is called
the
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Classification quality: the receiver
operating curve

> Often h(x) is more valuable than its
thresholded version

a(x) = [h(z) > t] -
> Consider two-dimensional space with
coordinates (TPR(t), FPR(t)), }
corresponding to various choices of
the threshold ¢ 100%
> The plot TPR(t) vs. FPR(#) is called | =
the
(ROC) curve 0%;/ P(FP) 100%
Source: Wikipedia
> Area under curve (ROC-AUC)

Denis De

h e . .
refféCts classification quality



Classification quality: imbalanced data

> TPR(t) vs. FPR(t) / ROC is bad for imbalanced data: for £ = 1000,
n_ = 950 (high background noise), n+ = 50 (low signal),
a trivial rule h(x) = —1 (“treat everything as background”) would
yield:

Denis Derkach 10
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Classification quality: imbalanced data

> TPR(t) vs. FPR(t) / ROC is bad for imbalanced data: for £ = 1000,
n_ = 950 (high background noise), n+ = 50 (low signal),
a trivial rule h(x) = —1 (“treat everything as background”) would
yield:
> accuracy(a,

X*) = 0.95 (bad)
> TPR(a, Xf) =0.(0)

Denis Derkach 10



Classification quality: imbalanced data

> TPR(t) vs. FPR(t) / ROC is bad for imbalanced data: for £ = 1000,
n_ = 950 (high background noise), n+ = 50 (low signal),
a trivial rule h(x) = —1 (“treat everything as background”) would
yield:
» accuracy(a, X*) = 0.95 (bad)
> TPR(a, Xf) 0. (0F)
> FPR(a, X*) = 0.
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Classification quality: imbalanced data

> TPR(t) vs. FPR(t) / ROC is bad for imbalanced data: for £ = 1000,
n_ = 950 (high background noise), n+ = 50 (low signal),
a trivial rule h(x) = —1 (“treat everything as background”) would
yield:
» accuracy(a, X*) = 0.95 (bad)
> TPR(a, X*) = 0. (1)
> FPR(a, X*) = 0. (bad)
> Criteria better suited for imbalanced problems:

Ll recall = Ll
TP+ FP’ ~ TP +FN

precision =

Denis Derkach 10



Classification quality: imbalanced data

> The plot recall vs. precision is
called the (PR)
curve

Denis Derkach



Classification quality

> The plot recall vs. precision is
called the (PR)
curve

> Recall(t) vs. Precision(t) is
good for imbalanced data: for
¢ = 1000,
n_ = 950 (high background
noise), n4+ = 50 (low signal),
a trivial rule h(x) = —1 would
yield:

Denis Derkach

: imbalanced data



Classification quality

> The plot recall vs. precision is
called the (PR)
curve

> Recall(t) vs. Precision(t) is
good for imbalanced data: for
¢ = 1000,
n_ = 950 (high background
noise), n4+ = 50 (low signal),
a trivial rule h(x) = —1 would
yield:

> Recall(a, X*) = 0. (OK)

Denis Derkach

: imbalanced data



Classification quality: imbalanced data

> The plot recall vs. precision is
called the precision-recall (PR)

ROC - Balanced ROC - Imbalanced

C u rVe (Positive: 1000, Negative 1000) (Positive: 1000, Negative: 10 000)
1.00 ‘ 1 1.00¢
1 M T ~— Random
> Recall(t) vs. Precision(t) is £ 20751 = b
% 0.50 « 3 0.50{ — Good early retrieval
good for imbalanced data: for & oz 3 025! =
0.00 {¥ + + + = | 0.00 ¥ + + + =
g = 1000, 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
1 - Specificity 1 - Specificity
—_— i Precision-Recall - Balanced Precision-Recall - Imbalanced
n— = 950 (h I g h baCkg rou nd (Positive: 1000, Negative 1000)  (Positive: 1000, Negative: 10 000)
noise) = 50 (low signal) o |
’ n+ - g ’ 0751 L0751 —| Random
S S — Poor early retrieval
4 M 2 4 2 {
a trivial rule h(x) = —1 would ~ ¢°= §ov = e
a a — Excellent
0.251 0251
. Perfect
yield: 000! o0
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Recall Recall

> Reca”(a7 Xé) = 0 (OK) Source: classeval.wordpress.com
> Precision(a, X*) = 0.
(OK)

Denis Derkach



Overfitting



Generalization and overfitting

> Training set memorization: for seen (x, %) € X, h(x) =y
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Generalization and overfitting

> Training set memorization: for seen (x, %) € X, h(x) =y

> equally good performance on both new and seen
instances

> How to assess model’s generalization ability?

> Consider an example:
> y = cos(1.5mx) + N(0,0.01), x ~ Uniform|0, 1]
> Features: {x}, {x, 22, 23 2%}, {z,... 21%}
> The model is linear w.r. t. features: f(x) = wT¢(x)
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Generalization and overfitting

> Training set memorization: for seen (x, %) € X, h(x) =y

> equally good performance on both new and seen

instances
> How to assess model’s generalization ability?
> Consider an example:
> y = cos(L.5mx) + N(0,0.01), z ~ Uniform|0, 1]
> Features: {x}, {x, 22, 23 2%}, {z,... 21%}
> The model is linear w.r. t. features: f(x) = wT¢p(x)

> How well do the regression models perform?

Denis Derkach



Polynomial fits of different degrees

Degree 1 Degree 4 Degree 15
MSE = 4.08e-01(+/- 4.25e-01) MSE = 4.32e-02(+/- 7.08e-02) MSE = 1.82e+08(+/- 5.47e+08)
— Model — Model — Model
— True function — True function — True function
eoe Samples eoe Samples

eoe Samples

Denis Derkach



Model validation and selection

> We have free parameters in models:
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> polynomial degree d, subset of features in multivariate
regression, kernel width in kernel density estimates, ...
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> We have free parameters in models:

> polynomial degree d, subset of features in multivariate
regression, kernel width in kernel density estimates, ...

> Model selection: how to select optimal hyperparameters for a
given classification problem?

> how to estimate true model performance?
> Can we use entire dataset to fit the model?
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Model validation and selection

> We have free parameters in models:

> polynomial degree d, subset of features in multivariate
regression, kernel width in kernel density estimates, ...

> Model selection: how to select optimal hyperparameters for a
given classification problem?

> how to estimate true model performance?
> Can we use entire dataset to fit the model?

> Yes, but we will likely get overly optimistic performance estimate

> The solution: rely on held-out data to assess model performance

Denis Derkach



Train /validation

> Split training set into two subsets:

V4 V4 V4
X" = Xpaw U XyaL
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Train /validation

> Split training set into two subsets:

V4 V4 V4
X" = Xpaw U XyaL

. 1
> Train a model h on Xtpan
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Train /validation

> Split training set into two subsets:

‘ ‘ ‘
X" = Xpaw U XyaL
> Train a model h on X4,y
> Evaluate model h on X{,
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Train /validation

> Split training set into two subsets:

X" = Xiga U Xvac
> Train a model h on X4aan
> Evaluate model h on X{x
> Assess quality using Q(h, X{, )
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Train /validation

> Split training set into two subsets:
¢ ¢ ¢
X" = Xqpan U Xyar
> Train a model h on X4,y
> Evaluate model h on X{,
> Assess quality using Q(h, X{, )

> Data-hungry: can we afford the
"luxury” of setting aside a portion of
the data for testing?
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Train /validation

> Split training set into two subsets:
¢ l 14
X" = X7rain U Xyar

i i
> Train a model h on Xtpan

> Evaluate model h on X{, Avalable data

> Assess quality using Q(h, X{, )

> Data-hungry: can we afford the Split

"luxury” of setting aside a portion of
the data for testing? Tty e Validation

set

> May be imprecise: the holdout
estimate of error rate will be
misleading if we happen to get an

benis ddf@rtunate” split .



Assessing generalization ability:
cross-validation

> Split training set into subsets of equal
size X! = X{U...UXEL
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Assessing generalization ability:

cross-validation

> Split training set into subsets of equal
size X! = X{U...UXEL

> Train K models hq, ..., hg where
each model Ay, is trained on all
subsets X]f,
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Assessing generalization ability:
cross-validation

> Split training set into subsets of equal
size X! = X{U...UXEL

> Train K models hq, ..., hg where
each model Ay, is trained on all
subsets X]f,

> Assess quality using

K
CV =+ kz:jl Q(hg, X}) (K -fold)
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Assessing generalization ability:
cross-validation

> Split training set into subsets of equal
size X! = X{U...UXEL

> Train K models hq, ..., hg where
each model Ay, is trained on all
subsets X]f,

> Assess quality using

K
CV =+ kz:jl Q(hg, X}) (K -fold)

91%

Fold 1
Validation

89%

Fold 2
Validation

> Leave-one-out cross-validation:
X} = {(xk,yx)} (yes, train ¢
models!)

Denis Derkach

92%

Fold 10
Validation




Cross-validation method: drawbacks

K
oV = = > Qi Xf)
k=1
Many folds:
> Small bias: the estimator will be very accurate
> Large variance: due to small split sizes
> Costly: many experiments, large computational time
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Cross-validation method: drawbacks

K
oV = = > Qi Xf)
k=1

Many folds:

> Small bias: the estimator will be very accurate

> Large variance: due to small split sizes

> Costly: many experiments, large computational time
Few folds:

> Cheap, computationally effective: few experiments

> Small variance: average over many samples

> Large bias: estimated error rate conservative or smaller than the

true error rate

Denis Derkach 18



Decision trees



Decision tree formalism

Decision tree is a binary tree V

>

>

Internal nodes u € V': predicates
By : X — {0 1}
Leafs v € V: predictions x

Algorithm h(x) starts at u = wuy

> Compute b = 3,(x)

>
>

>

fb=0,u + LeftChild(u)
fb=1,u + RightChild(u)
fuisaleaf, return b

In practice: 3,(x:j.t) = [x; < ]


https://pos.sissa.it/321/226/pdf

Greedy tree learning for binary classification
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https://pos.sissa.it/321/226/pdf

Greedy tree learning for binary classification

w/ lambda=14 and levei=10
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https://pos.sissa.it/321/226/pdf

Ensembling

One could organize the trees into "collection”.
Ensembles:

> Single Decision Tree.
> Random Forest: mean of N decision trees predictions.

> AdaBoost: set of N trees. A new tree is trained on mistakes of
previous built trees. Prediction is weighted mean of predictions of
the single trees.

> Gradient Boosting: set of N trees. Prediction is weighted mean of
predictions of the single trees. Weights are selected to minimize
the loss function.

These algorithms are easy to train and provide good predictive power.

Denis Derkach 20



Summary so far

> We covered only "supervised” machine learning: regression and
classification. This type of learning needs labeled datasets (which
we normally have from simulation).

> There is also a big part, which will not be covered here:
"unsupervised” learning (clustering, some anomaly detection) and
"reinforcement” learning (agent behaviour in medium).

Denis Derkach 21



Classification in
High-Energy Physics



LHCb layout
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PID at LHCb

Problem: identify particle type associated
with a track/energy deposited in the
subdetectors

* Charged:m, e, u, K, p

* Neutral: % vy, n

Better PID performance - better bkg
rejection - more precise results.

PID also used for trigger (in particular for

upgrade): less background - less resources
(less bandwidth)

High-level info from subdetectors + track
qguality info - multi-class classification in
machine learning

innermost layer » outermost layer
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Global Particle Identification

Problem: identify particle type
associated with a track.

Particle types: Electron, Muon, Pion,
Kaon, Proton and Ghost

Input observables: particle responses
in RICH, ECAL, HCAL subdetectors,
Muon Chambers and Track
observables.
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Quality Metrics

) One-vs-rest ROC curves used to
measure models quality.

) Area under them (ROC AUC) are
used as target metrics to select the
best models.

Background rejection
©c o © o o ©° °o o -
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o
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o
@
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Proton, 0.92
Pion, 0.94
Muon, 0.99
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Ghost, 0.96

ROC Curves_
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subdetectorN

subdetector1

subdetectorN

subdetector1

Input features from all subdetectors

) Several possibilities were tested, all of them were inspired by the knowledge of detector responses.

Technologies

output of neural
networks on
subdetectors
is concatenated with
original features

NNV X/
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representations
for subdetectors
are concatenated
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DO
AN\
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network output

network output

network output

) Other approaches using Decision trees were also tested and brought competitive results.



Results

- W
0.8 o LHCb Simulation
) Using the above mentioned approaches 9 o "
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Journal of Physics: Conference Series. 2018. Vol. 1085. No. 4. P. 1-5. o5

http://iopscience.iop.org/article/10.1088/1742-6596/1085/4/042038/meta



http://iopscience.iop.org/article/10.1088/1742-6596/1085/4/042038/meta

Flat efficiency approach

o PID performace depends on particle kinematics (p,p7,7) and Neracks
o Flat PID efficiencies:

¥ Good discrimination for different analyses
¥ Unbiased background discrimination
% Reduced systematic uncertainties

Introduce flatness term in loss function: £ = L Adal oss + L FIat
o Flat4d: LFIatM = ﬁ/:/at_p + £F/at_PT + »CFlat_nTracks + LF/at_n
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(Generative adversarial networks

input—>» Generator ——> Image

We want a realistic generation of the images with good randomisation.

https://medium.com/@jonathan_hui



https://medium.com/@jonathan_hui

(Generative adversarial networks

.|
1

Project and reshape

We can construct a network that has ever increasing number of
elements in layers. Thus, we will be able to generate something out of
random noise. How we can make it more realistic?



(Generative adversarial networks

Training
samples
L 4 learn what is real
~ »
Discriminator GAN
-
T feedback
input—> Generator —>» Image
o .

We introduce discriminator! Another neural network that can can check
that the image we produce looks real.



(Generative adversarial networks

Training
samples
v learn what is real
\
Discriminator GAN
-
T feedback
input—>» Generator —>» Image
- J

For discriminator, we use a typical objective to discriminate between
figures

IIILE)l,X V(D) . Em~1)dam(m) [log D((L’)] T ]Ezwpz(z) [lOg(l e D(G(Z)))]

recognize real images better recognize generated images better



(Generative adversarial networks

Training
samples
v learn what is real
\
Discriminator GAN
-
T feedback
input—>» Generator —>» Image
- J

For generator, we ask to make generation as real as possible:

minV(G) = Eznp,(z)[log(1 — D(G(2)))

Optimize G that can fool the discriminator the most.



(Generative adversarial networks

Training
samples
v learn what is real
- >
Discriminator GAN
-
T feedback
input—>» Generator —>» Image
< J

And we can rewrite the objective into a single line:

n}in max V(D,G) = Egnpyu () 10g D(x)] + E.np, (2)[log(1 — D(G(2)))).



(Generative adversarial networks

Using this technique, we can generate «realistic» cats. What else?



Collision Event at

2010-03-30, 12:58 CEST
Run 152166, Event 316199

http://atlas.web.cern.ch/Atlas/public/EVTDISPLAY/events.html




Realistic responses of detector?

GEANT Simulated

GAN Generated

GEANT Simulated

GAN Generated

http://arxiv.org/abs/arXiv:1812.01319



https://indico.cern.ch/event/668017/timetable/
http://arxiv.org/abs/arXiv:1812.01319

Realistic responses of detector?

[2.7 <= ETA <=291] [2.91 <= ETA <= 3.11}
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In fact, we do not care about
the image - we need better
description of the
reconstructed observables.

For example, prediction how
particle identification of
Cherenkov detectors behave.

p

Currently, the fast simulation
of this kind takes 10s of
milliseconds, while full
simulation is around 10s of
seconds.

S0 S0
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https://doi.org/10.1016/j.nima.2019.01.031



https://rich2018.org/indico/event/1/contributions/89/
https://doi.org/10.1016/j.nima.2019.01.031

Need for statistics

> New experiments and
upgrades require a lot of
simulation.

> Full simulation of LHC event
can take up to several
minutes.

> We need to simulate billions of
events.

Denis Derkach
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Bayesian optimization



SHiIP Experiment

Decay volume

22588

Nk
<SS
N

Emulsion spectrometer

J

Hidden sector spectrometer

\ North "@" Targets T2, T4, T6
Area \/\/ 7

Active muon shield SHIP AWAKE (previously

CNGS)

injection 536
FAST extraction
HiRadMat ' TT60 (Tl 2) & TT61 (HiRadMat)
TT10

TI2

& Search for Hidden Particles

& Post-LHC era experiment for direct search of very weakly
interacting light particles

J.Phys.Conf.Ser. 934 (2017) no.1
40



Active Magnetic Shield

8
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< Absorber shape optimization: background suppression at
reasonable cost



Gaussian Process Optimization

<& Loss function includes both . Gaussian process
background level and cost

:L e S _,_/’\/ [\‘\‘; L S—

& estimation in every point takes -0
significant time 15

<& 50+ configuration parameters

GP value
o
o

|
O
(8,

—20 T T T T T T T
-2.0 -1.5 -10 -05 0.0 0.5 10 15 20

Acquisitioh function

<& full GEANT simulation of 10+M
muons passing through iron

0.04 -

0.02

¢ loss function is very irregularin ¢ | /J\ -
the multidimensional parameter = |
space o
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& Use Gaussian Processes x



Shield Optimization

Target/Magnetised hadron absgrbe:

!
‘ ﬁ I I
/Best known point to an itearation

4

™

¢ The same background
suppression |

<& Twice lighter

& save $9

1000 2000 3000 400 5000
iteration

Advanced optimization methods
rule in multidimensional space

, Journal o IC Co
http://iopscience.iop.org art|cle7 O [



http://iopscience.iop.org/article/10.1088/1742-6596/934/1/012050/meta

Emerging Challenges: Reliable and Fast Simulation

<& Computationally heavy tasks

¢ e.g. simulating shower development in the calorimeter

< May be substituted by generative models trained on the
original task

& save orders of magnitude in computing performance

<& challenge is to keep physics performance high


https://indico.cern.ch/event/668017/timetable/

Conclusions

> the first steps in machine learning are extremely easy: we started
from a simple linear regression;

> modern machine learning algorithms help processing a lot of
information in high-energy physics;

> more interesting applications are coming.

Denis Derkach 26
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