Study of the process $e^+e^- \rightarrow K_s K_L$ in the energy range above 1.0 GeV with the CMD-3 detector.

Nikita Petrov, BINP, NSU. Scientific Advisor: Peter A. Lukin

• To measure the cross section of the process $e^+e^- \rightarrow K_s K_L$ in the 1.1 – 2.0 GeV center-of-mass energy range.

CMD-3 and VEPP-2000

The CMD-3 detector layout.

- 1 beam pipe, 2 drift chamber,
- 3 BGO end cap calorimeter, 4 Z-chamber,
- 5 superconducting solenoid, 6 LiXe calorimeter,
- 7 CsI calorimeter, 8 yoke,
- 9 outer muon system, 10 VEPP solenoids.

Time between collisions – 82 ns Beam current – 200 mA Collision length – 3.3 cm Beam energy dispersion – 0.7 MeV Perimeter – 24.4 m $L = 10^{32}$ cm⁻²s⁻¹ at 2.0 GeV 3 / 15 $L = 10^{31}$ cm⁻²s⁻¹ at 1 GeV

Experiment and Monte Carlo simulation

We use 2011, 2012 and 2017 experimental data.

Year	Integrated Luminosity, pb ⁻¹	Number of energy points	Energy range (center-of-mass), GeV
2011	18,9	38	1,1 — 2,0
2012	13,2	16	1,28 — 1,98
2017	39,6	28	1,45 — 2,007

20 000 events of $e^+e^- \rightarrow K_s K_L(\gamma)$ were simulated for each of 51 energy points in the center-of-mass energy range 1.1 – 2.0 GeV

Selection criteria of $e^+e^- \rightarrow K_s K_L$

- Process is detected by the decay $K_s \rightarrow \pi^+\pi^-$, according to the special procedure.
- K_s-candidate has to be reconstructed by two «good» tracks.

«Good» tracks selection criteria:

- |z| < 15 cm
- 0,9 < θ < π-0,9
- |ρ| > 0,1 cm
- |p| > 40 MeV
- $\chi_r^2 < 30; \chi_z^2 < 25$
- dE/dX of the tracks corresponds to pion ionization losses

Selection criteria of $e^+e^- \rightarrow K_s K_L$

-0.5

 α – the angle between the vector directed from the beam point to the K_s decay point and the K_s momentum.

The cos α distribution and the selection criterion: cos $\alpha > 0.8$

0

0.5

distribution with the α selection

Selection criteria of $e^+e^- \rightarrow K_s K_s$

K_s energy is equal to beam energy

$$| E(K_s) - E_{beam} | < 20 MeV$$

This selection excludes these background processes: $e^+e^- \rightarrow K_S K_L \eta; e^+e^- \rightarrow K_S K_L \pi^0$

show the selection criterion. ($\sqrt{s} = 1.7 \text{ GeV}$)

Polar angle distribution (left fig.) and flight length distribution (right fig.) for selected K_s .

Determining of signal events

- Number of signal events is determined equally to both the experiment and Monte Carlo simulation
- Approximation function: one Gauss function + constant
- Data in table are represented by season
 - N_{sig} number of signal events
 - N_{bkg} number of background events

Year	N _{sig}	N _{bkg}
2011	1639	62
2012	364	16
2017	484	29

Determining of signal events

Number of events determining in the experiment (left fig.) and in the Monte Carlo simulation (right fig.) at the energy point 1.1 GeV

Registration efficiency

 $\varepsilon_{\rm reg} = rac{N_{
m sig}}{N_{
m total}}$

$$\begin{split} & \varepsilon - \text{registration efficiency} \\ & N_{_{sig}} - \text{number of signal events in MC simulation} \\ & (\text{determined from an approximation}). \\ & N_{_{total}} - \text{number of events in MC, satisfying this} \\ & \text{criterion} \mid \text{E}(\text{K}_{_{\text{S}}}) - \text{E}_{_{\text{beam}}} \mid < 20 \text{ M} \Rightarrow \text{B} \end{split}$$

The dependence of the registration efficiency on the energy

Trigger efficiency

• CMD-3 has two independent triggers: charged trigger (TF), neutral trigger (CF)

$$\varepsilon_{trig} = 1 - (1 - \varepsilon_{CF})(1 - \varepsilon_{TF})$$

$$\varepsilon_{TF} = \frac{N_{TF\&CF}}{N_{CF} + N_{TF\&CF}}$$
$$\varepsilon_{CF} = \frac{N_{CF\&CF}}{N_{TF} + N_{TF\&CF}}$$

Trigger efficiency by year

Radiative corrections

On Radiative Corrections to e+ e- Single Photon Annihilation at High-Energy.

E.A. Kuraev, Victor S. Fadin

Sov.J.Nucl.Phys. 41 (1985) 466-472

The dependence of the radiative correction on the energy

Conclusion

• Cross section of $e^+e^- \rightarrow K_s K_L$ has been measured for 2011, 2012 and 2017 data from the CMD-3 detector

Visible cross section

Nsig

εL

CMD-3. $e^+e^- \rightarrow K_S K_L$ Kozyrev, E. A. et al. Phys. Lett. B760 (2016), p. 314-319

Cross section approximation

$$\sigma_{K_S K_L}(s) = \frac{\pi \alpha^2 \beta^3}{3s} |F_{K^0}(s)|^2 \qquad \sigma_{K_S K_L}(s) = \frac{\pi \alpha^2 \beta^3}{3s} |F_{K^0}(s)|^2$$

$$F_{K^+}(s) = \frac{1}{2} \sum_{V=\rho,\rho',\dots} c_V B W_V + \frac{1}{6} \sum_{V=\omega,\omega',\dots} c_V B W_V + \frac{1}{3} \sum_{V=\phi,\phi',\dots} c_V B W_V,$$

$$F_{K^{0}}(s) = -\frac{1}{2} \sum_{V=\rho,\rho',\dots} c_{V} BW_{V} + \frac{1}{6} \sum_{V=\omega,\omega',\dots} c_{V} BW_{V} + \frac{1}{3} \sum_{V=\phi,\phi',\dots} c_{V} BW_{V},$$

т<u>д</u> / 15