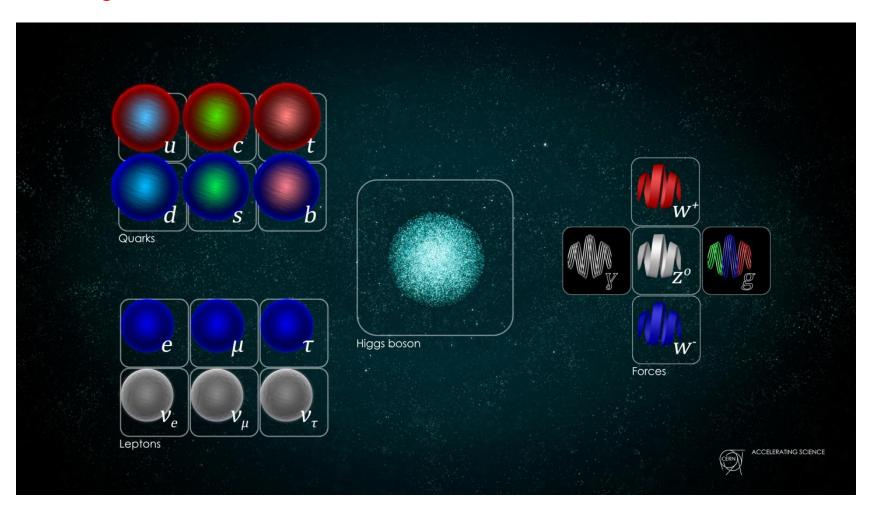
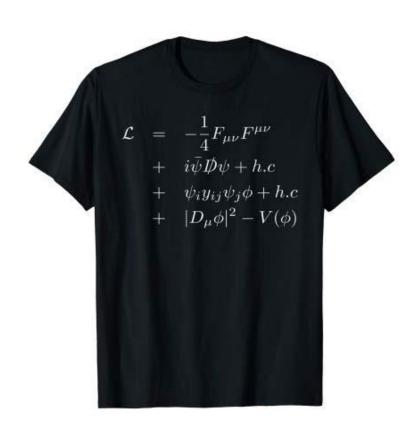
Эксперимент в физике частиц


И.Р.Бойко ОИЯИ

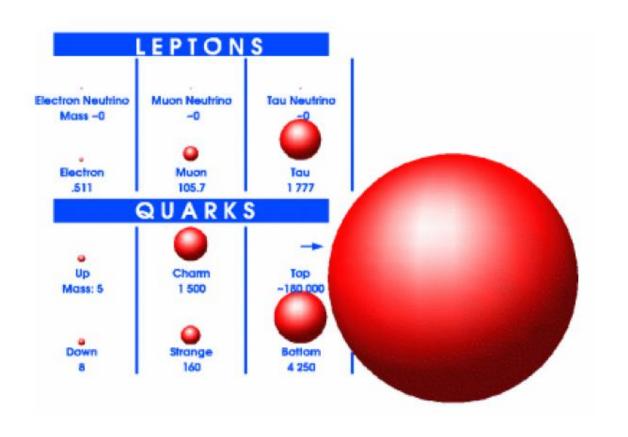
- Какие бывают частицы
- Как их регистрировать
- Приборы для регистрации
- Примеры экспериментальных установок
- Крупные коллайдеры прошлого и настоящего
- Будущие коллайдеры


Какие частицы изучает физика элементарных частиц?

- Когда-то слово «атом» означало «неделимый»
- Сейчас мы знаем, что атом очень даже делим
- Однако название «атом» сохраняется по традиции
- Нечто подобное случилось с термином «элементарные частицы»...

Фундаментальные частицы

Все фундаментальные частицы



Фундаментальные или элементарные?

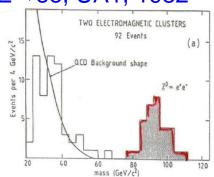
- Фундаментальные частицы точечные (не имеющие структуры) объекты, входящие в состав лангранжиана теории
- Элементарные частицы могут быть синонимом фундаментальных...
- ...или могут означать «реальные» частицы взаимодействия и/или распады которых наблюдаются в эксперименте
 - Элементарные частицы: все фундаментальные, кроме несущих цветовой заряд (кварки и глюоны), плюс все адроны
- Топ-кварк занимает двойственное положение: он распадается быстрее, чем успевает войти в состав адрона, поэтому его причислить одновременно к фундаментальным и элементарным частицам

Топ-кварк среди других фундаментальных частиц

Классификация элементарных частиц по времени жизни

- Стабильные: электрон, протон, фотон, нейтрино(?)
- Квазистабильные (ст более метра): нейтрон, мюон, пион, заряженный каон, К_L
- Короткоживущие (ст от микрона до метра): тау-лептон, К_S, гипероны (Λ/Σ/Ξ/Ω), нижние состояния адронов, содержащих с- и b-кварки
- Нестабильные (ст менее микрона): Хиггсбозон, поля слабого взаимодействия W[±] и Z⁰, топ-кварк, сотни (!) адронных резонансов: π⁰,ρ,K*,ω,η,J/ψ,Υ, тетракварки, пентакварки,...

Всё это мы хотим регистрировать и измерять:


- Стабильные и квазистабильные
- Короткоживущие
- Нестабильные резонансы
- Нейтрино
- Кварки и глюоны???

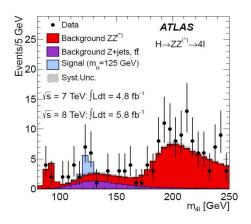
Регистрация нестабильных частиц

- Нестабильные резонансы распадаются немедленно в точке рождения
- Регистрируются только продукты распада
- Восстанавливается инвариантная масса продуктов распада, т.е. квадрат суммарного 4-импульса: M²=(ΣΕ)²-(Σρ)²
- Инвариантная масса образует пик на массе нестабильной частицы

Примеры инвариантной массы

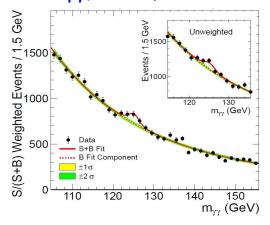
Открытие Z-бозона, Z→ee, UA1, 1982

Открытие топ-кварка, $tt \rightarrow (Wb)(Wb) \rightarrow bbqq\ell v$, D0, 1995


Fitted Mass (GeV/c²)

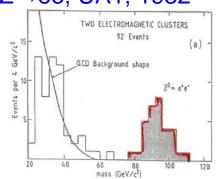
100

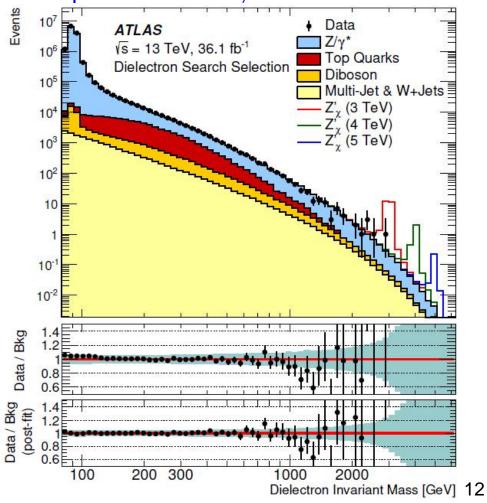
200


100

Открытие Хиггс-бозона, $H \rightarrow ZZ \rightarrow (\ell\ell)(\ell\ell)$, ATLAS, 2012

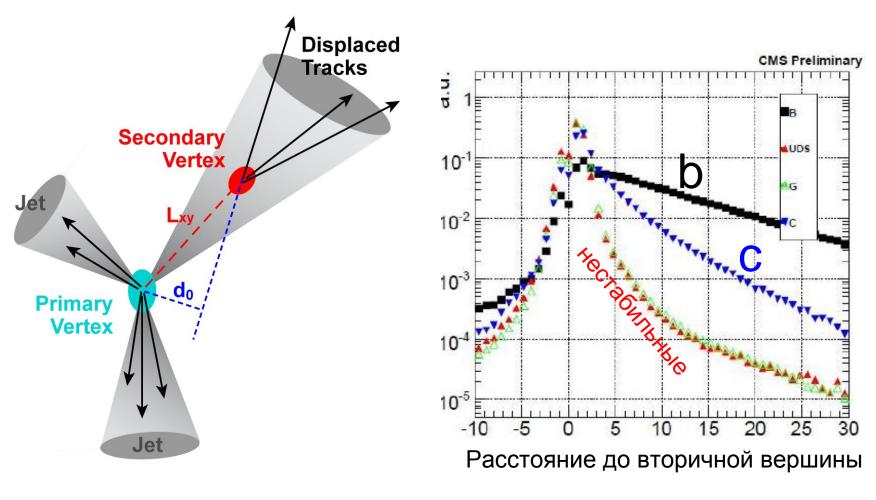
Открытие Хиггс-бозона, $H \rightarrow \gamma \gamma$, CMS, 2012


200


Примеры инвариантной массы

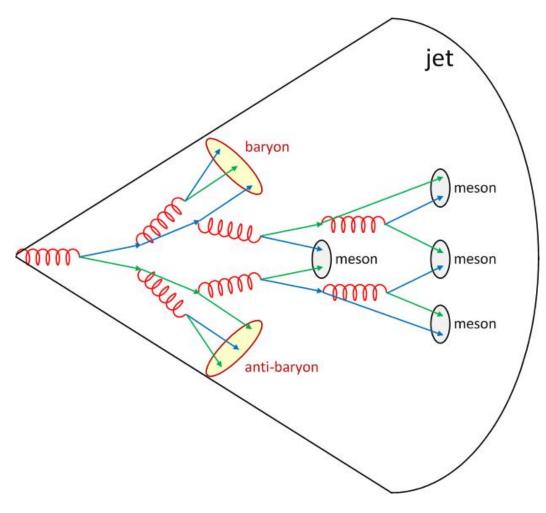
Экс

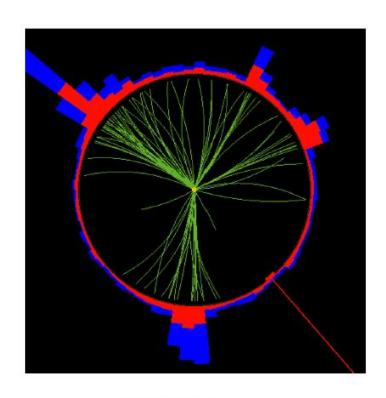
Открытие Z-бозона, Z→ee, UA1, 1982


Открытие Z→ee: римейк на LHC, 2018

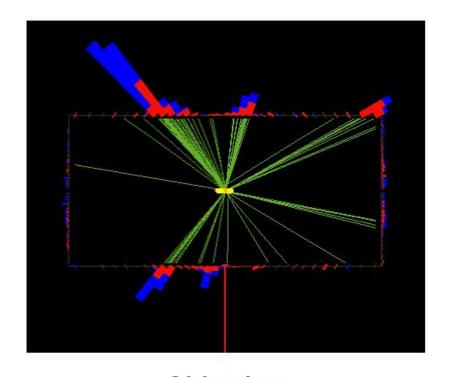
Регистрация короткоживущих частиц

- Как и с нестабильными частицами, регистрируются только продукты распада
- Однако точка распада смещена относительно распада нестабильных частиц в этом же событии
- Если точно измерить траектории (треки) продуктов распада, они сойдутся в точке (вторичной вершине), отстоящей (на микроны или миллиметры) от точки распада всех нестабильных частиц (первичной вершины)
- В случае адронов, содержащих b-кварк, эта методика называется b-tagging

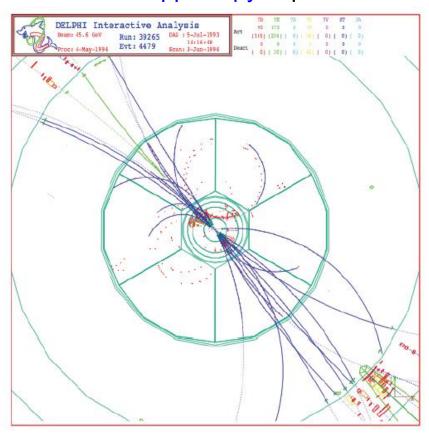

b-tagging

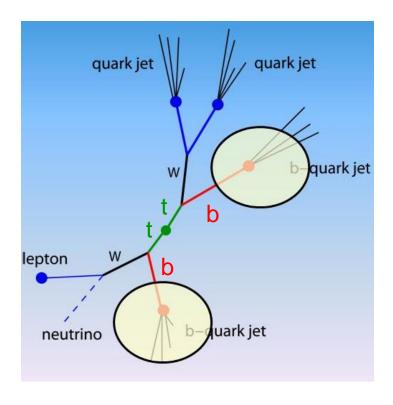

А можно ли всё же регистрировать кварки и глюоны?

- Конфайнмент: цветные объекты заключены внутри адронов
- При попытке удаления партонов (кварков/глюонов) друг от друга сила (и энергия) взаимодействия возрастает бесконечно
- E=mc²: энергия движения тратится на рождение из пустоты кварк-антикварковых пар. Они рождаются десятками или сотнями
- Исходные и новые кварки объединяются в адроны (адронизация). Родившиеся адроны (π±,π⁰,K,K⁰,p,n...) летят плотными кластерами (струями), направление которых совпадает с направлением начальных партонов
- Восстанавливая струи конечных частиц, можно уверенно реконструировать кварки и глюоны с энергией ≥25 ГэВ


Схема образования струи

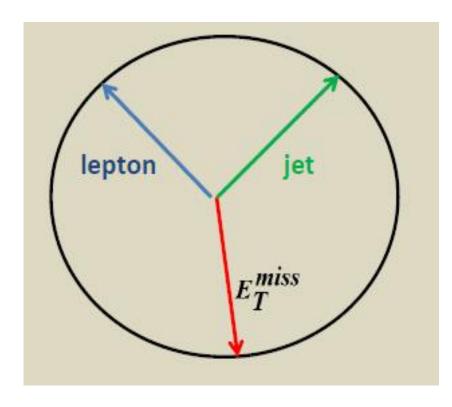
Мультиструйное событие на LHC


End view.Beams are going in to and out of the screen.


Side view.Beams coming in from the left and the right.

Примеры струй

Событие ее → qq → струи при Е=91ГэВ


Пара топ-кварков на Теватроне

А можно ли регистрировать нейтрино?

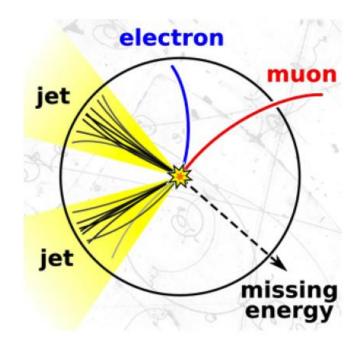
- Нельзя, так как нейтрино почти не взаимодействуют с веществом: 1 взаимодействие на 100 световых лет воды
- Однако о присутствии нейтрино можно догадаться по законам сохранения (именно так нейтрино и были открыты)
- Суммарные энергии и импульсы продуктов реакции должны равняться значениям начальных частиц. Дефицит недостающая энергия, недостающий импульс говорит о том, что улетела неучтённая частица

Недостающий импульс

$$\vec{p_T} = -\sum \vec{p_T}(observed)$$

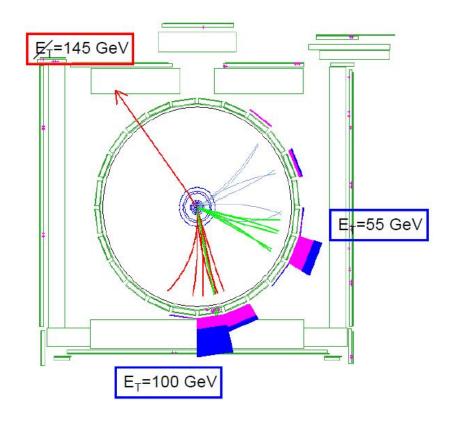
• Пучки коллайдера направлены по оси Z. В плоскости XY векторные суммы импульсов равны нулю:

$$\sum_{\text{initial}} p_x = \sum_{\text{final}} p_x = 0 \qquad \sum_{\text{initial}} p_y = \sum_{\text{final}} p_y = 0$$


• Если измерены ненулевые значения, это говорит о присутствии нейтрино (или новой неизвестной частицы!)

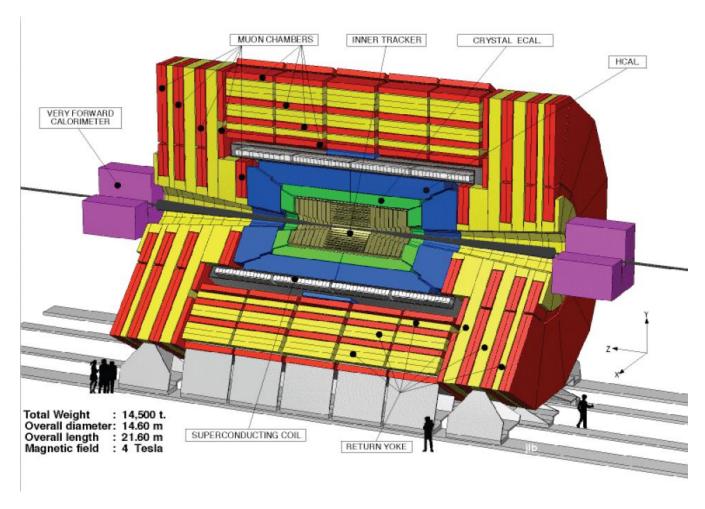
Neutrinos leave detector 'unseen', but carry away energy

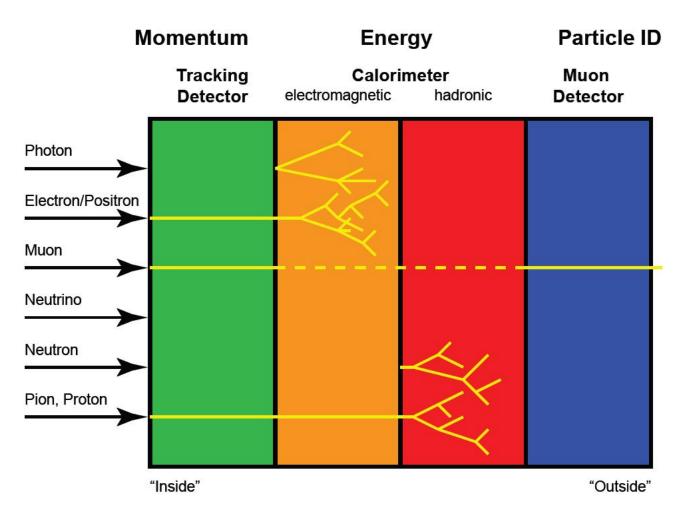
- total momentum in z-direction of interacting partons not known
 - Different to e^+/e^- collisions
- But $\sum E_T^{initial} = 0 = \sum_{all} E_T^{final}$
- Hence we define


$$ec{E}_T^{miss} = -\sum_i ec{E}_T^i$$

- Use \vec{E}_T^{miss} as estimate for neutrinos
 - No z-information!

Теватрон: возможное событие $pp \rightarrow ZH \rightarrow (vv)(bb)$

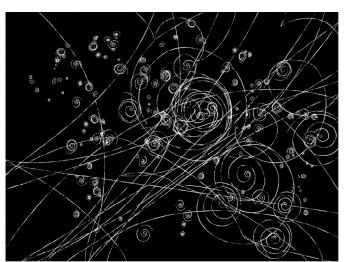

Две струи с b-таггингом плюс недостающая энергия


Итак...

- Мы рассмотрели регистрацию нестабильных и короткоживущих частиц, кварков, глюонов, нейтрино.
- Все эти методы в конечном итоге сводятся к регистрации и измерению [квази-]стабильных частиц.
- Мы хотим:
 - Зарегистрировать частицу
 - Измерить её кинематику (энергия, направление)
 - Идентифицировать частицу (узнать её тип)

Так выглядит современная экспериментальная установка

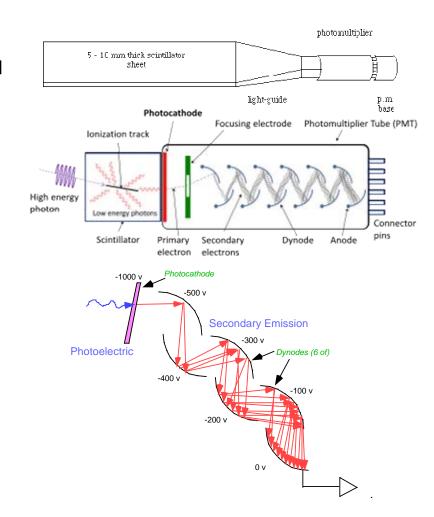
Как регистрируют частицы



Регистрация заряженных частиц

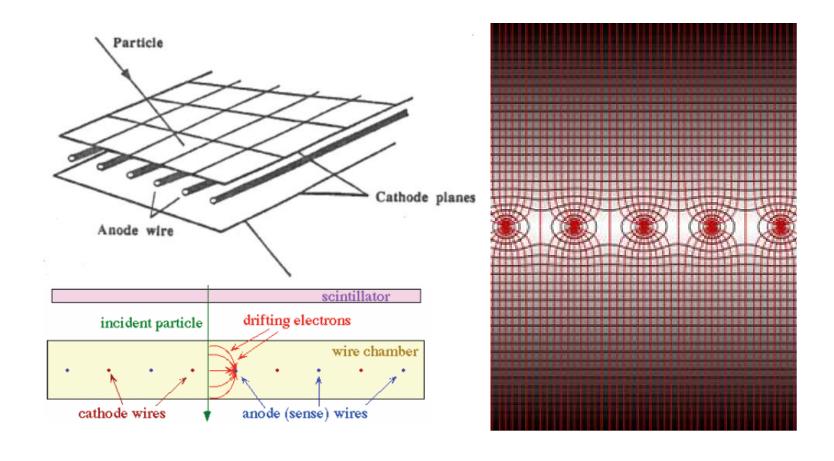
- Проходя через вещество, заряженная частица отрывает электроны от атомов и оставляет трек ионизации вдоль своей траектории
- Измеряя треки, регистрируют прохождение частицы и определяют её траекторию
- В магнитном поле треки искривляются: R=p/qB. Измеряя радиус кривизны, определяют импульс частицы
- Существует множество приборов для измерения треков ионизации

Пузырьковые камеры и камеры Вильсона



• Позволяют непосредственно сфотографировать треки ионизации! Вдоль трека происходит вскипание перегретой жидкости или конденсация перенасыщенного пара.

Сцинтилляционные счётчики


- Сцинтиллятор прозрачный материал, в котором ионизация приводит к свечению
- Свет регистрируется фотодиодом или фотоумножителем
- Усиление ФЭУ достигает 10⁶ и более, что позволяет регистрировать единичные фотоны
- Органические (пластиковые или жидкие) сцинтилляторы: до 10К фотонов/МэВ, дешёвые (5\$/кг)
- Кристаллические: до 70К фотонов/МэВ, дорогие (100-1000\$/кг)

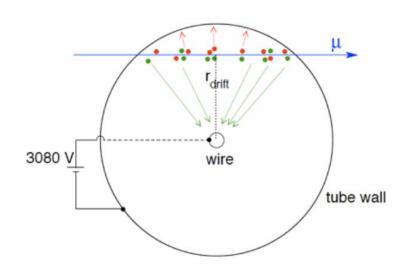
Газовые детекторы

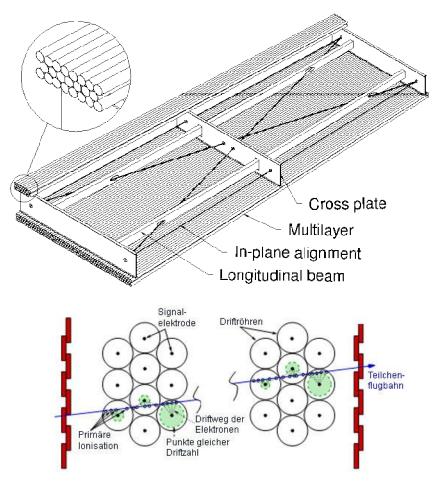
- Ионизация возникает в газе, заряды дрейфуют в область очень высокой напряжённости электрического поля.
- Здесь происходит газовое усиление ускоряющиеся электроны вырывают новые электроны из соседних атомов. Типичная величина газового усиления 10⁴-10⁵.
- Координатная точность достигается либо мелким шагом полеформирующих проволочек (порядка 1 мм), либо измерением времени медленного дрейфа электронов в проволочке

Принцип действия проволочной камеры

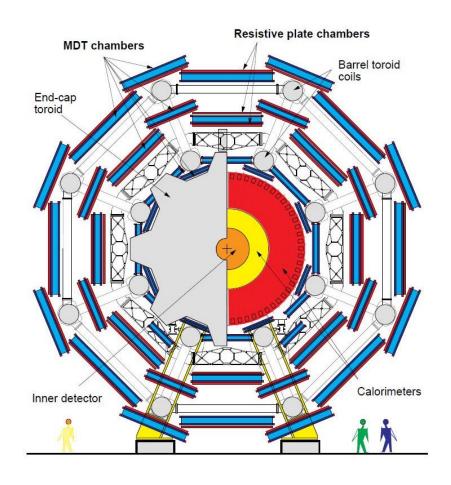
Дрейфовые трубки мюонной системы ATLAS (MDT)

Длина камеры: до 6 м

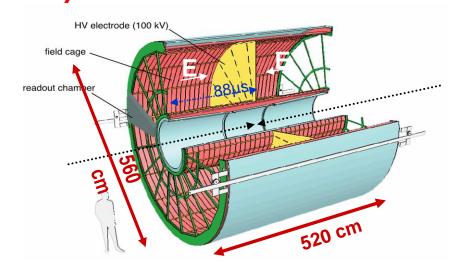

• Число трубок в слое: до 60

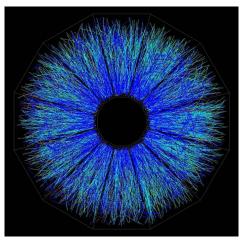

Диаметр трубки: 30мм ± 15 микрон

• Центровка проволочки: ±10 микрон

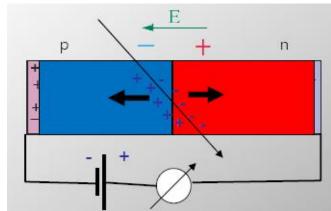

• Максимальное время дрейфа: 700нс

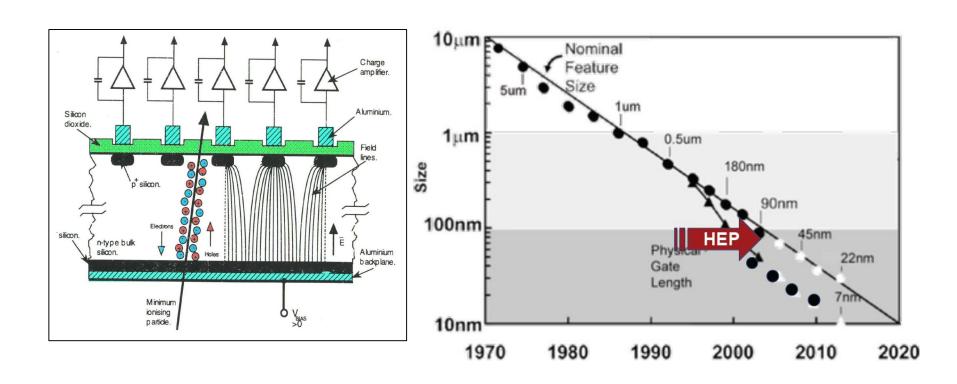
• Координатная точность: 80 микрон




Мюонная система ATLAS

Время-проекционные камеры (ТРС)

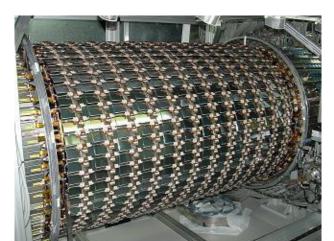

- Измеряют полную 3-мерную форму трека
- Одна из координат восстанавливается измерением времени дрейфа в большом (несколько метров) объёме
- В конце дрейфового промежутка (в торце ТРС) находится проволочная камера, которая измеряет две другие координаты
- Координатная точность: 150-300 микрон по Rφ, 300-1000 микрон по Z


Полупроводниковые детекторы

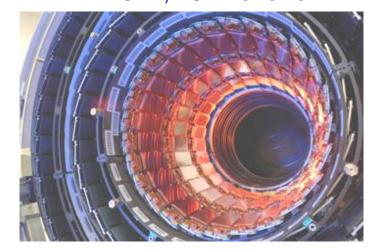
 Принцип действия аналогичен газовым детекторам: заряженная частица оставляет трек электронов и дырок, которые дрейфуют к противоположным краям

- Благодаря высокой плотности материала не требуется «газового усиления» ионизации достаточно для регистрации обычным электронным усилителем
- Благодаря прогрессу полупроводниковых технологий, удаётся достичь очень высокой координатной точности порядка 5 микрон
- Очень дорогие детекторы! Раньше применялись только в качестве «вершинных детекторов», для реконструкции точки распада короткоживущих частиц. При этом основная часть трека измерялась газовыми детекторами

Электроника кремниевых детекторов

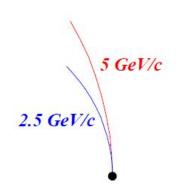

Потокторов

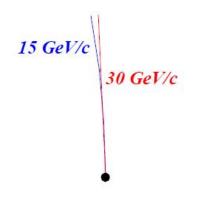
детекторов


DELPHI 1996 2m², 175К каналов

CDF 2001 11m², 750К каналов

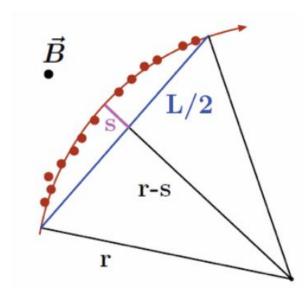
ATLAS 2007 60m², 6M каналов


CMS 2007 220m², 10M каналов



Камчатская школа 2019

Эксперимент в ФЧ (1)


Точность измерения импульса

- В обоих примерах импульсы различаются в 2 раза
- При этом треки низких энергий прекрасно различаются, а треки высоких энергий стремятся к прямой линии и сливаются.
- Чем больше импульс, тем с худшей точностью он измеряется!
- Пути повышения точности:
 - Более точное измерение треков (координатная точность): до 5 микрон
 - Увеличение магнитного поля (изгиб треков): до 5Т
 - Удлинение треков (размер детектора):10 метров и более

Формула точности измерения импульса

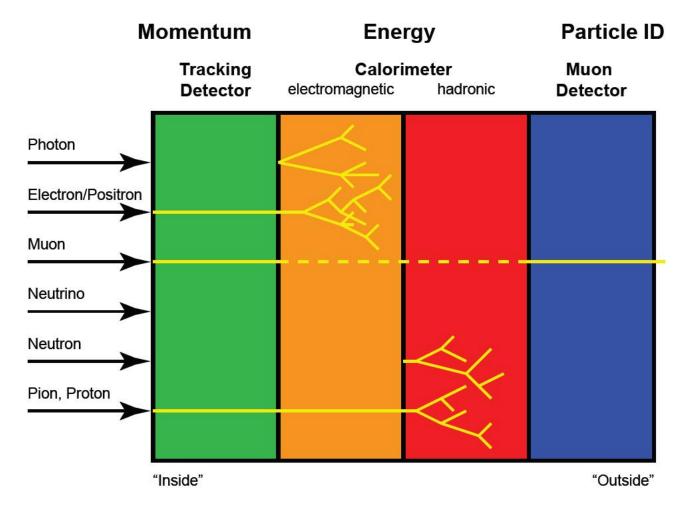
- In real applications usually only slightly bent track segments are measured
 - Figure of merit: sagitta

Segment of a circle: $s = r - \sqrt{r^2 - \frac{L^2}{4}}$

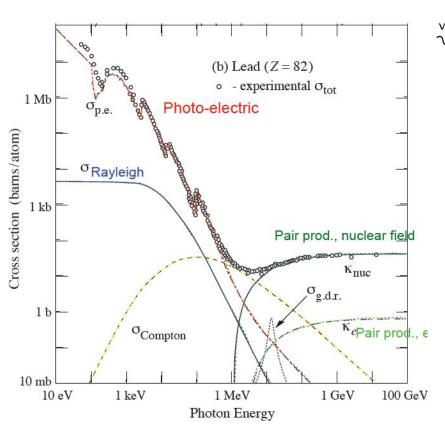
$$\Rightarrow r = \frac{s}{2} + \frac{L^2}{8s} \approx \frac{L^2}{8s} (s \ll L)$$

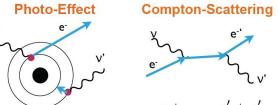
With the radius-momentum-B-field relation: $r=\frac{p_T}{0.3\,B} \,\Rightarrow\, s=\frac{0.3\,B\,L^2}{8\,p_T}$

Momentum resolution due to position measurement:


$$\frac{\sigma_{p_T}}{p_T} = \frac{\sigma_s}{s} = \sqrt{\frac{720}{n+4}} \frac{\sigma_y p_T}{0.3BL^2}$$

NIM, 24, P381, 1963

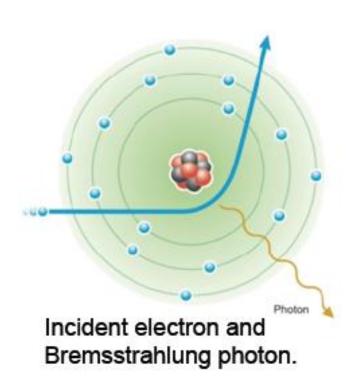

Точность измерения импульса


- С ростом импульса точность его измерения ухудшается
- Относительная погрешность пропорциональна импульсу: σ(p)/p ~ p
- Абсолютная погрешность растёт даже как квадрат импульса: σ(p) ~ p²
- Способы повышения точности:
 - Координатная точность
 - Большое магнитное поле
 - Размер трекера (зависимость как L²!)
 - Больше точек на треке (слабая зависимость √n)

Итак, заряженные частицы регистрируют в трековых детекторах

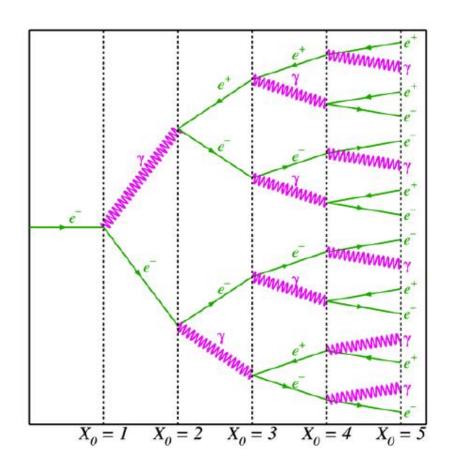
Что происходит с фотонами в веществе

поле ядра



- Сечение (вероятность)
 пропорционально квадрату
 заряда ядра
- Поэтому для регистрации фотонов используют Pb, W, CsI, ...

Pair creation

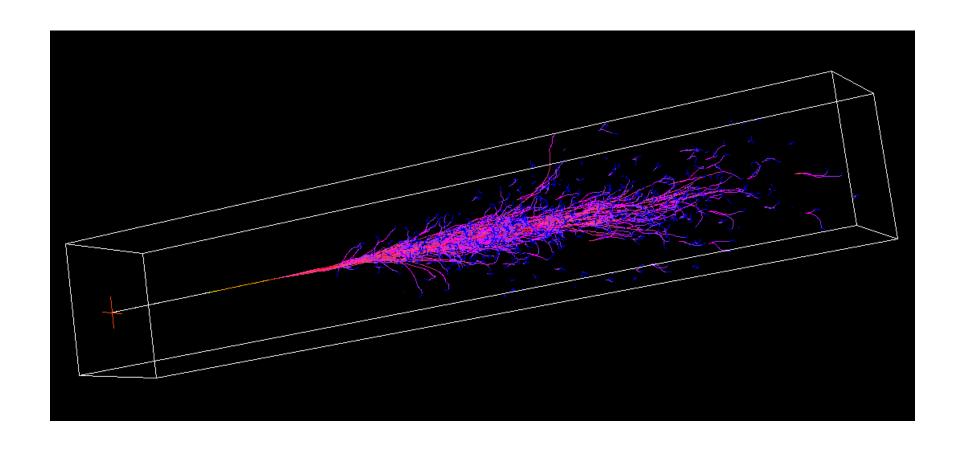

Nucleus

А что дальше произойдёт с электроном?

- Электрон в поле ядра отклонится (испытает ускорение) и сбросит тормозной фотон
- Вероятность пропорциональна квадрату ускорения: a²=(F/m_e)²=(eZ/m_e)²
- Эффект значителен только для электрона (m_e<<m_u)
- Z², как и у фотона! Длины свободного пробега е и γ почти равны (разница 20%)
- Возникает электромагнитный ливень (каскад)

Электромагнитный ливень

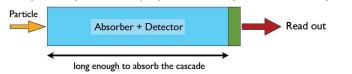
Важнейшая характеристика вещества – радиационная длина X_0 (длина свободного пробега электрона)

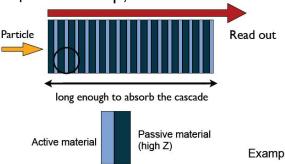

$$X_0 = \frac{A}{4\alpha N_A Z^2 r_e^2 \ln \frac{183}{Z^{1/3}}}$$

Для фотона длина свободного пробега равна $(9/7)X_0$

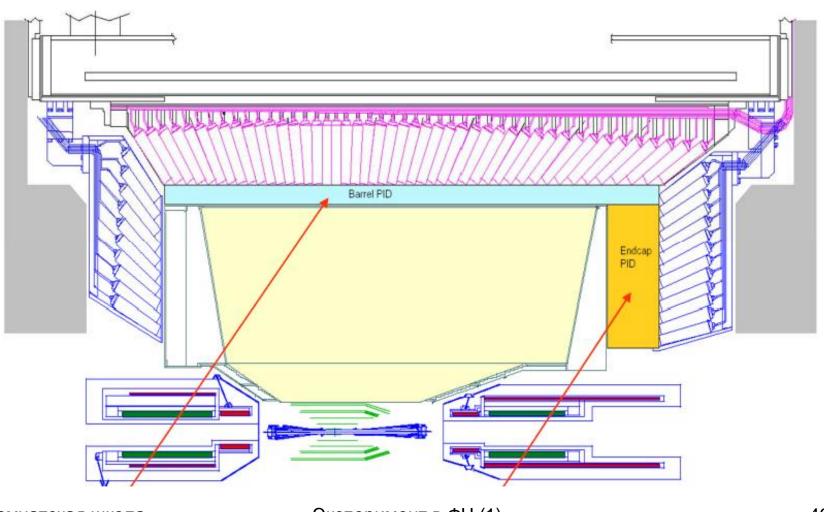
Pb: 5.6mm W: 3.5mm

PbWO₄: 8.9 мм CsI: 18.6мм


Развитие ливня

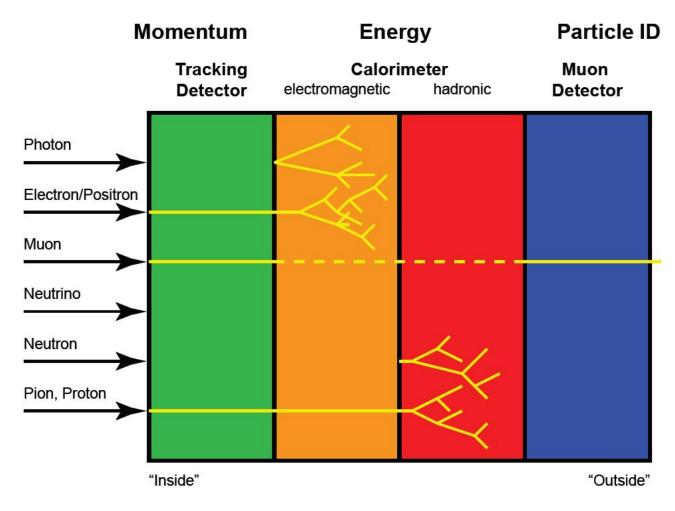

Электромагнитный калориметр

- Для фотонов:
 - регистрирует частицу
 - измеряет энергию
 - измеряет направление
- Для электронов:
 - улучшает измерение импульса в трекере
 - совпадение измерение энергии в трекере и в калориметре позволяет идентифицировать заряженную частицу как электрон

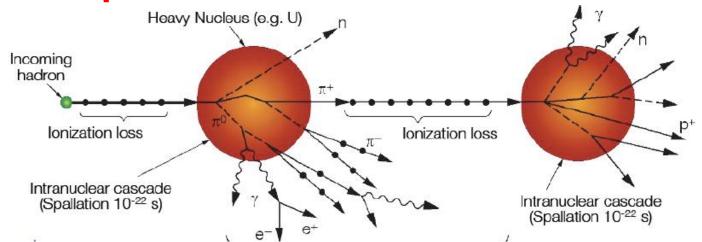

- Гомогенный калориметр
 - Поглотитель является активным веществом
 - Сигнал пропорционален полной поглощённой энергии
 - Примеры: CsI(TI), PbWO₄, жидкий аргон

- Сэмплинговый калориметр
 - Слои поглотителя и активного вещества перемежаются
 - Сигнал пропорционален количеству частиц на конечной стадии ливня
 - Примеры: Рb/пластиковый сцинтиллятор, Si/W

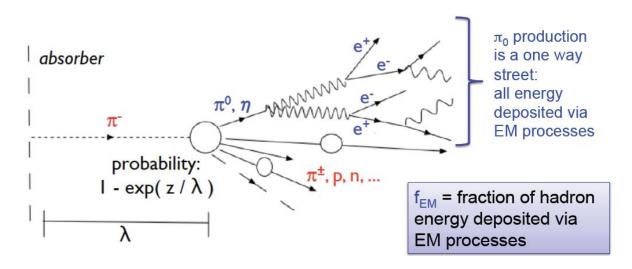
Калориметр эксперимента BELLEII: сцинтиллятор CsI(T1)


Энергетическое разрешение

- В сэмплинговых калориметрах измеренная энергия пропорциональна числу конечных частиц в каскаде. Число частиц N имеет статистическую флуктуацию √N.
- Таким образом, ΔΕ/Ε ~1/√Ε
- Для калориметров полного поглощения механизм немного другой (флуктуация числа фотоэлектронов), но в итоге результат тот же
- На самом деле, из-за наличия шумов и других помех точность не улучшается бесконечно: △E/E =A/√E + B
- Типичные значения:
 - Сэмплинговый калориметр: A=10-15%, B=1-2%
 - Гомогенный калориметр: A=2-5%, B=0.3-0.5%
- В отличие от трековых детекторов, точность измерений в калориметре растёт с энергией! Это повышает важность калориметрии по мере увеличения энергии ускорителей


Поиск $Z' \rightarrow ee$ и $Z' \rightarrow \mu\mu$

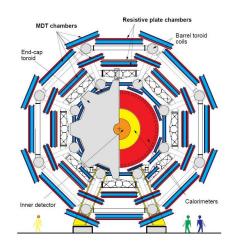
Итак, электроны и фотоны измеряют в электромагнитных калориметрах

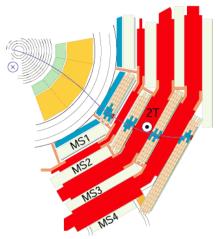


У адронов всё то же самое!

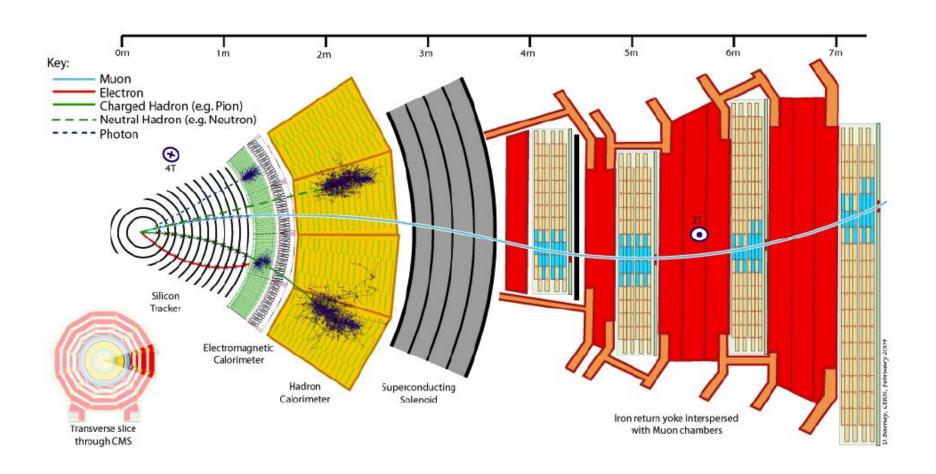
- При лобовом попадании адрона в ядро происходит сильное (ядерное) взаимодействие, и ядро разваливается с рождением новых адронов (p,n,π,K)
 - Развивается адронный ливень
- Вероятность пропорциональна суммарной площади ядер, то есть $R^2 \sim A^{2/3}$
- Таким образом, не требуются дорогие материалы с большим Z. Желательны материалы большой плотности – например, железо.
- Ядерная длина (\(\lambda \)) длина свободного пробега адрона.
 - Fe: 16см, Pb: 18см, бетон: 42см, вода: 83см

Электромагнитная компонента ливня

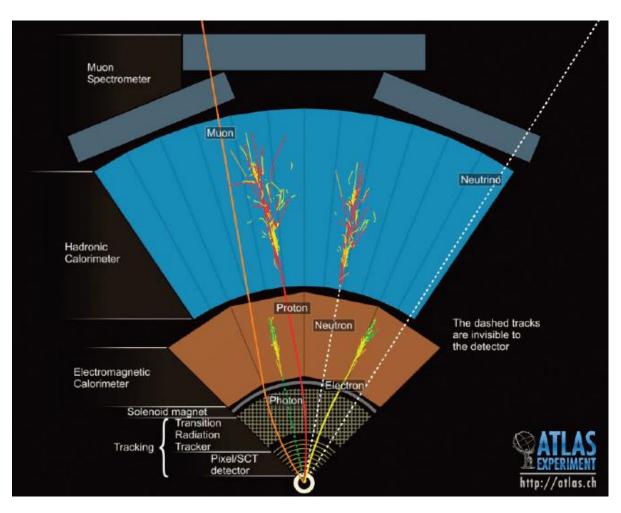

- При развитии адронного ливня рождаются $\pi^0(\to\gamma\gamma)$. Вся их энергия выделится в виде ЭМ-подливня
- ЭМ-каскад имеет другую длину пробега, другой отклик детектора, другие потери в поглотителе... Измеренная энергия будет зависеть от доли ЭМ-компоненты
- На этот эффект вносят поправку либо при анализе данных, либо создавая компенсирующий калориметр, конструкция которого сводит к минимуму влияние ЭМ-компоненты

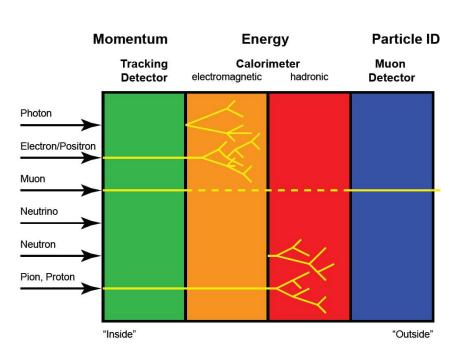

Для чего нужны адронные калориметры

- Типичная точность измерения энергии адрона (40-60%)/√Е не может конкурировать с трековой системой (в отличие от мюонов, ТэВные пионы не рождаются). Однако:
- Это единственный способ измерить энергию нейтронов и K_L
- Самое главное: это измерение энергии адронных струй, а значит оценка энергии партонов. На LHC точность составляет 10-12% для 100-ГэВных струй и 5-7% для 500 ГэВ
- Адронный калориметр это мюонный фильтр. В нём застревает всё, что не застряло в ЭМ-калориметре. Частица, прошедшая весь детектор насквозь это наверняка мюон


Мюонная система

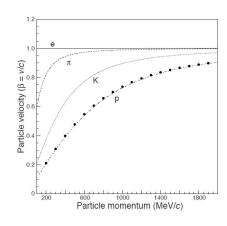
- Частица, пролетевшая навылет все калориметры – это мюон.
- Чтобы установить этот факт, нужно после калориметров поставить трековый детектор
- Обычно мюонная система это дешёвый и очень грубый детектор, который только регистрирует факт прохождения частицы
- Эксперименты LHC пошли другим путём: мюонная система там высокоточный прибор, измеряющий импульс мюона с разрешением, сравнимым с основным трекером
- Здесь помогает огромное плечо траектории (вспомним, что точность растёт как L²)

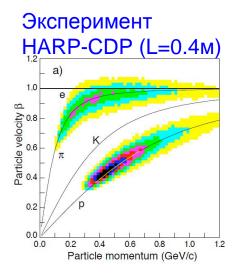



Кусочек детектора CMS

Кусочек детектора ATLAS

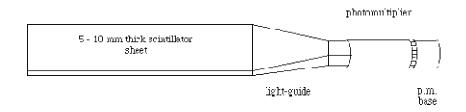
Идентификация адронов

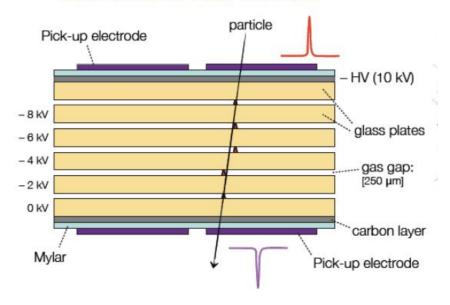

- Итак, мы умеем регистрировать и измерять импульс: электронов; мюонов; фотонов; нейтральных адронов (n,K_L); нейтрино (недостающий импульс)
- Всё остальное (заряженная частица, застревающая в адронном калориметре) это протон, или заряженный пион, или заряженный каон
- Как бы нам идентифицировать эту частицу (узнать её тип)?


Идентификация частиц

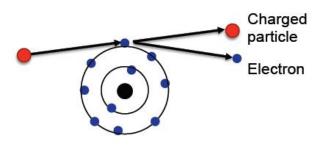
- Тип частицы это её масса
- 0.14ΓэВ (π[±]); 0.49ГэВ (K[±]); 0.94ГэВ (p[±])
- Импульс частицы измерен. При данном импульсе, чем различаются частицы разной массы?
- Скоростью! $m = p\sqrt{(1/\beta^2-1)}$
- Итак, нужно измерить скорость частицы, либо те её свойства, что (при данном импульсе) зависят от скорости

Скорость частицы

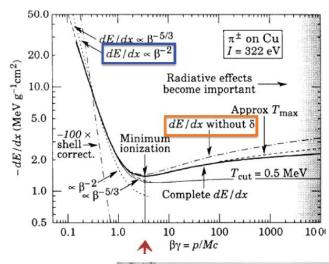

- Релятивистские частицы с импульсом р и массами М и m пролетят дистанцию L за разное время:
- $\Delta t = Lc(M^2-m^2)/(2p^2)$
- С ростом импульса разница устремляется к нулю
- Либо мы должны измерять время пролёта с огромной точностью
- Либо устанавливать огромную базу пролёта L, что как правило несовместимо с конструкцией установки
- Пример: при L=2м, ∆t для каона и пиона составит 730пс при 1 ГэВ/с и 180пс при 2 ГэВ/с

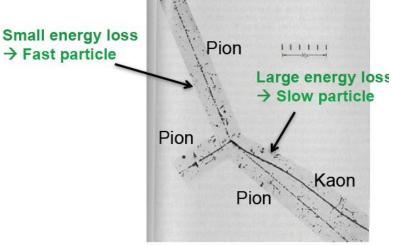


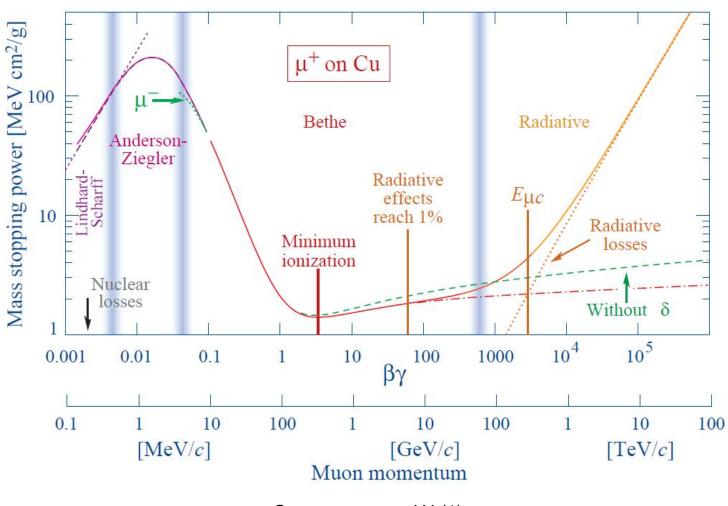
Детекторы времени пролёта (Time of Flight, TOF)


- На базе нескольких метров идентификация частиц до нескольких ГэВ/с возможна при измерении времени с точностью порядка 100 пс
- В XX веке время пролёта измерялось пластмассовыми сцинтилляторами: время высвечивания 1-2 нс, разрешение 80-100 пс
- В последнее время распространяются плоскорезистивные камеры (Resistive Plate Chamber, RPC): разрешение до 40-50 пс

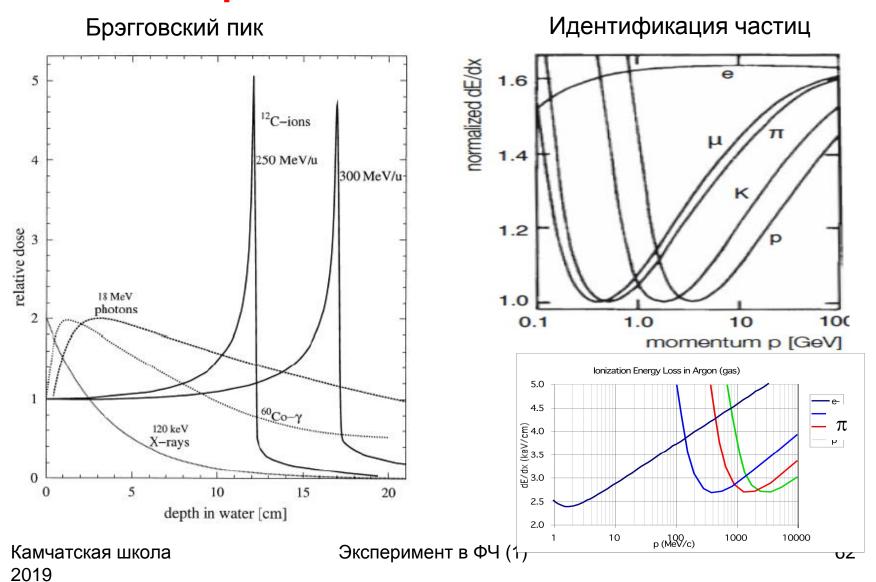
Multi Resistive Plate Chamber

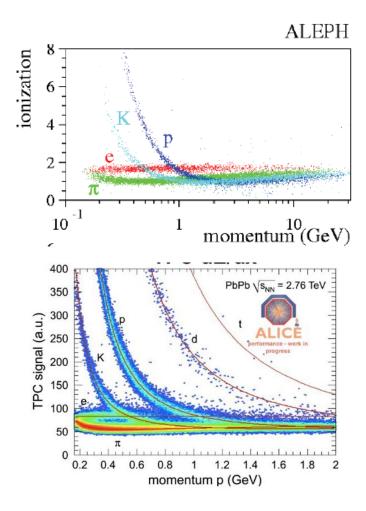


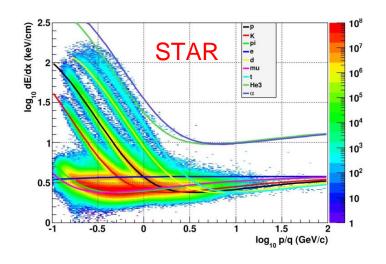

Плотность ионизации


$$\frac{dE}{dx} \propto \frac{Z^2}{\beta^2} \ln\left(a\beta^2 \gamma^2\right)$$

- Потери энергии на ионизацию (dE/dx) с хорошей точностью являются функцией только скорости
- Минимальная ионизация достигается при Лоренцфакторе порядка 3. Одинакова для всех частиц (кроме электрона). Примерно 2МэВ на грамм (т.е. на 1 см при ρ=1)

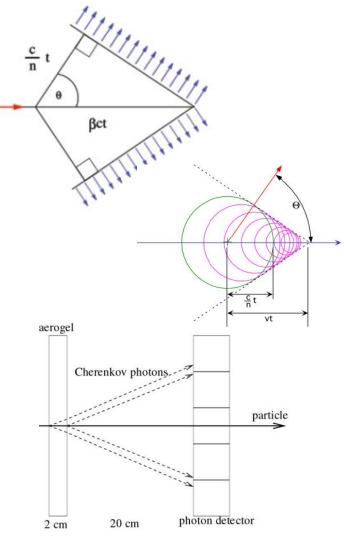


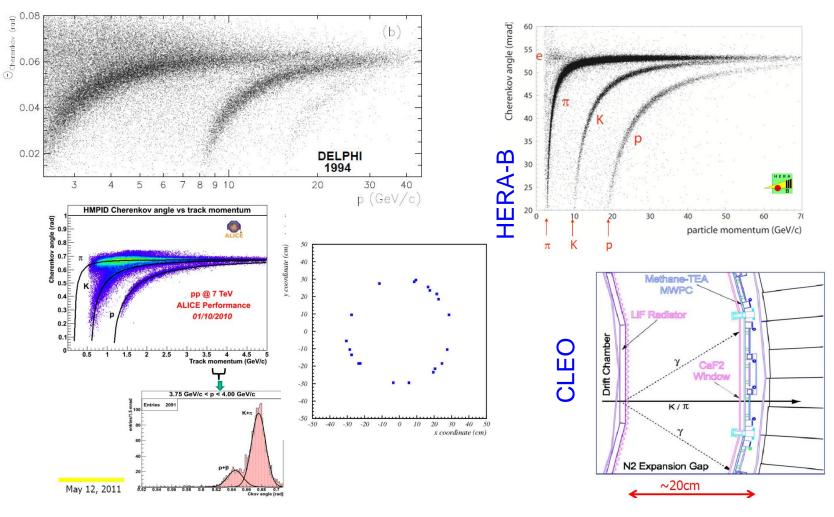

dE/dx в широком диапазоне



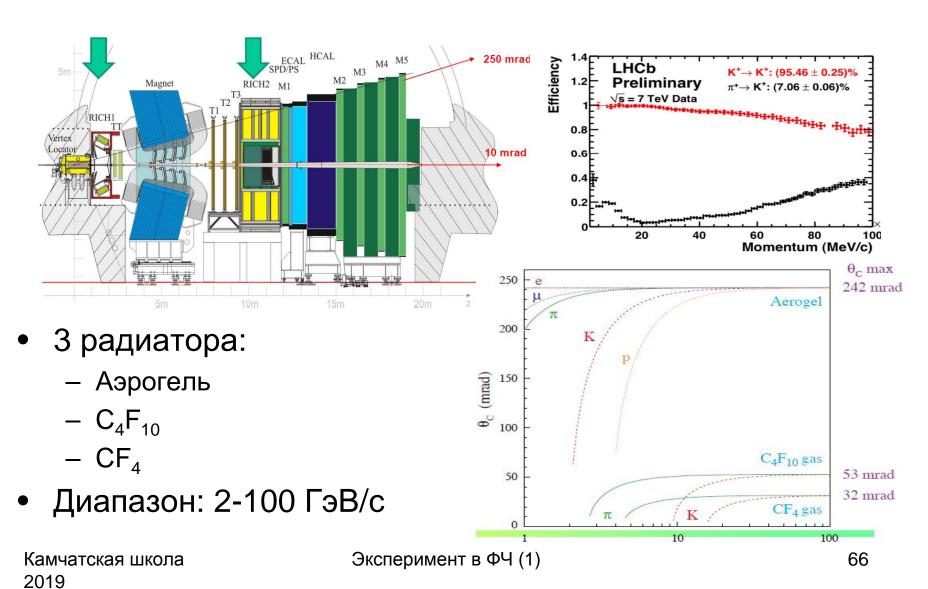
Применение dE/dx

dE/dx в экспериментах

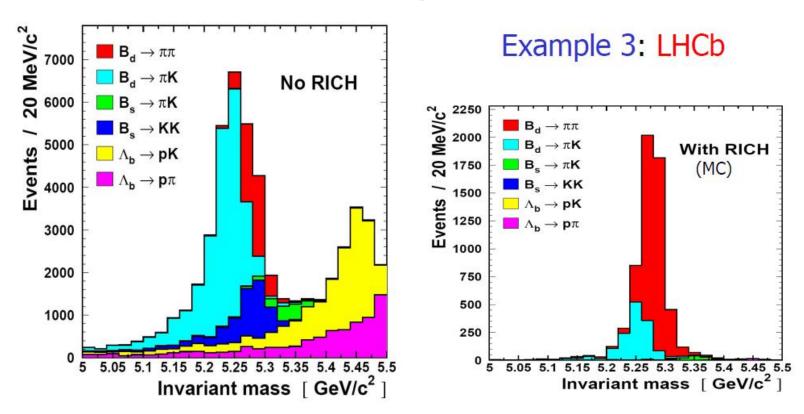



- dE/dx прекрасно работает ниже 1 ГэВ/с
- От 1 до ~10 ГэВ/с частицы разделяются на уровне 1-2 погрешностей измерения (всё же лучше, чем ничего)

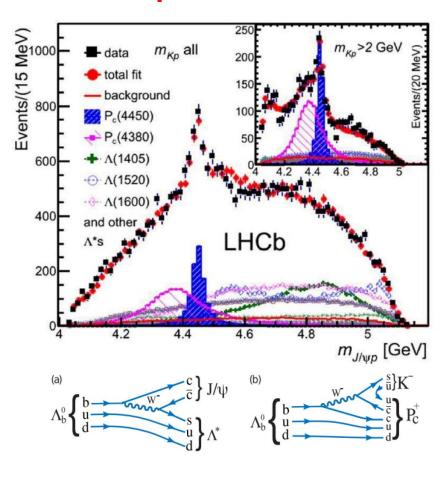
Черенковское излучение


- При движении быстрее скорости света в преломляющей среде заряженная частица излучает свет под углом cosθ=1/(nβ)
- Частица идентифицируется либо вычисляя скорость по измеренному углу, либо по самому факту излучения (скорость выше/ниже, чем с/n)
- Дифференциальные счётчики прекрасно работают на пучках фиксированного импульса
- В коллайдерных же экспериментах (с широким спектром вторичных частиц) необходимо измерение черенковского угла

RICH: Ring Imaging Cherenkov


LHCB: multi-RICH

За и против


- Черенковские счётчики обеспечивают идентификацию частиц до импульсов порядка 100 ГэВ/с
- За это приходится платить цену:
 - Пространство! Его приходится отнимать у трекера, ухудшая измерение импульса
 - Вещество! Ещё до калориметров частица пролетает порядка радиационной длины (радиатор, зеркала, фотодетектор). С большой вероятностью будет потеряна неизвестная часть электромагнитного ливня
- Эксперименты LHC пошли разными путями:
- ALICE, LHCB имеют отличные системы идентификации частиц
- ATLAS, CMS вообще не имеют идентификации, делая ставку на великолепное трекеры и калориметры

Примеры применения идентификации

Need to distinguish $B_d \rightarrow \pi\pi$ from other similar topology 2-body decays and to distinguish B from anti-B using K tag.

Инвариантная масса, b-таггинг, идентификация: пентакварки на LHCB

- В распадах Λ_b→J/ψрК наблюдается пик в инвариантной массе протона и J/ψ→μμ
- Поскольку это состояние ccbar, наиболее естественная интерпретация частица, состоящая из 5 кварков
- Наблюдаемый спектр удаётся описать только вкладом 2 состояний пентакварков

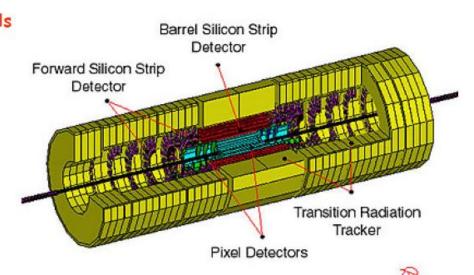
Резюме по детекторной аппаратуре

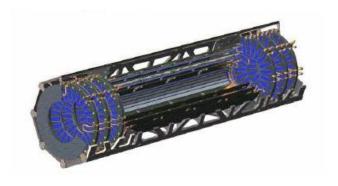
- Современные детекторы способны регистрировать все типы элементарных частиц.
 - Нейтрино восстанавливаются косвенно по недостающей энергии.
 - Партоны (кварки/глюоны) реконструируются по адронным струям
 - Нестабильные частицы восстанавливаются по продуктам распада
- Идентифицируются все типы частиц, кроме разделения n/K_I
 - Электроны и фотоны в калориметрах
 - Мюоны в мюонной системе
 - Адроны в RICH/dE/dx/TOF
- Энергия (импульс) измеряется трековыми детекторами до 1 ТэВ, калориметрами до нескольких ТэВ

Запасные слайды

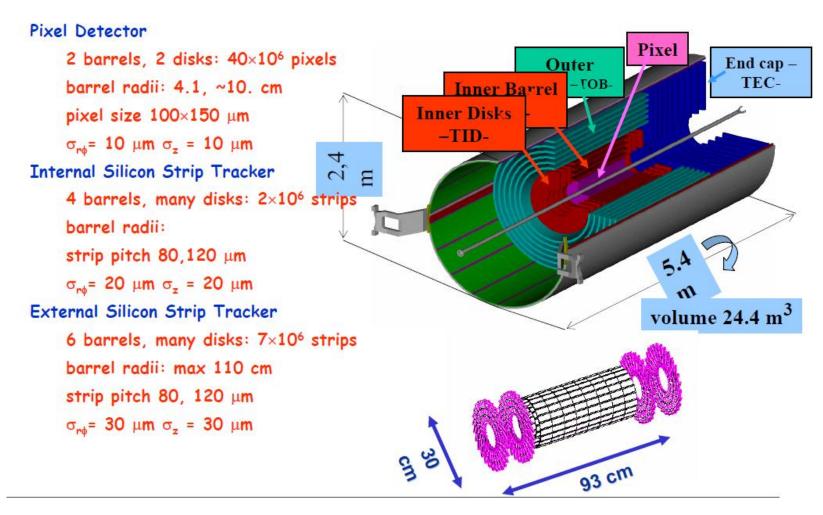
Трековый детектор ATLAS

Pixel Detector


3 barrels, 3+3 disks: 80×10^6 pixels barrel radii: 4.7, 10.5, 13.5 cm pixel size $50\times400~\mu\text{m}$ $\sigma_{r\phi}$ = 6-10 μm σ_z = 66 μm


SCT

4 barrels, disks: 6.3×10^6 strips barrel radii:30, 37, 44,51 cm strip pitch 80 μ m stereo angle ~40 mr σ_{nb} = 16 μ m σ_{r} = 580 μ m


TRT

barrel: 55 cm < R < 105 cm 36 layers of straw tubes $\sigma_{r\phi}$ = 170 μ m 400.000 channels

Трековый детектор CMS

