Participation of JINR in the BES-III physics research program (project BES-III/JINR)

Status report and prolongation proposal

Alexey Zhemchugov

PAC for Particle Physics, 50th Meeting

21 January 2019

BESIII Collaboration

- About 500 members, 66 institutes, 14 countries
- 38 institutes from China, 7 Asia, 16 Europe (including JINR and Novosibirsk, Russia), 5 - USA

BEPCII Collider

- Energy range 2.0 4.6 GeV
- Design luminosity 1.0x10³³ cm⁻² s⁻¹
- Achieved luminosity (2016) 1.0x10³³ cm⁻² s⁻¹
- Beam energy spread 5x10-4
- Bunch number
 93
- Maximum beam current 0.91A
- Circumference
 237m

BEPCII upgrade (2019)

- Energy range
 2.0 4.6 GeV
 4.9 GeV
- Design luminosity 1.0x10³³ cm⁻² s⁻¹
- Achieved luminosity (2016) 1.0x10³³ cm⁻² s⁻¹

+20-30% to the integrated luminosity

- Beam energy spread 5x10-4
- Bunch number
 93
- Maximum beam current
 0.91A
- Circumference
 237m

Upgrade plan (2019)

- Inner part of the Main Drift Chamber suffers from aging
- In summer 2019 it will be replaced by a Cylindrical GEM
- Similar to KLOE-2 CGEM

- Rate 10⁴ Hz/cm²
- $\sigma_{r\phi} \sim 130 \ \mu m$
- σ_p/p=0.5%@1GeV/c

BESIII Data Samples

World largest data samples J/ ψ , ψ (2S), ψ (3770), ψ (4040), ψ (4180), Y(4260), ... More than 200 papers published using these data

BESIII Reseach Programme

- Charmonium physics
- Charm physics
- Exotic states (XYZ)
- Light hadron spectroscopy
- tau-lepton physics
- R-ratio scan
- Baryon form-factors
- Search for «new physics»

Results of JINR's group and plan for 2020-2022

- The inclusive prompt charmonium production
- Measurement of cross-sections in the region of J/ψ peak
- Search for bound pp states

Inclusive prompt J/ ψ production (ee \rightarrow J/ ψ X)

- Prompt = Total $(\psi' \rightarrow J/\psi) (\chi_c \rightarrow J/\psi) (ee \rightarrow \gamma J/\psi)$
- Goal:
 - Test NRQCD (in particular, the universality of the NRQCD LDMEs)
 - NRQCD prediction: set of color-octet LDMEs are nonzero if σ>10pb at 4.5-5.5 GeV [Eur.Phys.J. C77 (2017) no.9, 597]
 - Test if unknown channels/states exist
- Data only available at 10.5 GeV:
 - -2.5 ± 0.3 pb (BaBar)
 - 1.5 ± 0.2 pb (Belle)
 - 1.9 ± 0.2 pb (CLEO)

Our result: $\sigma(ee \rightarrow J/\psi X)$

Inclusive cross-section vs. sum of known crosssections of exclusive channels

Research plan

- 2019 to finalise the analysis and to publish the crosssection of the inclusive prompt J/ ψ production in the energy range 3.8-4.6 GeV.
- 2020 Measurement of the cross-section of the inclusive prompt $\psi(2S)$ production
- 2021 Measurement of the cross-section of the inclusive J/ψ and $\psi(2S)$ production in the energy range 4.6-4.9 GeV.
- 2022 Inclusive measurement of the J/ψ polarisation in the energy range above ~4 GeV

Strong/EM phase difference in J/ψ decays

- pQCD predicts that the phase difference between strong and electromagnetic decay amplitudes to be 0° or 180° at lowest order [PRL 59, 621 (1987), Nucl. Phys. B 246, 52 (1984)]
- Experimentally, in many J/ψ decay channels, there is ~90° phase difference
- There is a theoretical hypothesis that this 90° is a general law of nature [PRD63, 054021(2001)]
- A new method to measure the phase was proposed by BESII [PLB 593 (2004) 89–94]
- We perform a scan of J/ψ peak to measure this phase
- As a spin-off, we provide systematic measurement of exclusive cross-sections, useful for generator tuning and theory constrains

 $ee \rightarrow \omega \pi^0$

ee→ωη

ee→φη

Research plan

- 2019 to finalise the analysis and to prepare the BESIII analysis note on the method and the final results of $e^+e^- \rightarrow \omega \pi^0$
- 2020 measurement of branching fraction of J/ψ →φη. Final results on the phase difference in e⁺e⁻ →φη
- 2021 Re-analysis of e+e- →ωη taking into account new data set with the energy of 2.9 GeV. Final results on the phase difference in this reaction.
- 2022 Study other reactions ($e^+e^-\to KK_{*}$, $e^+e^-\to \phi\eta'$) and possibly measure the phase difference

Structures at the $p\overline{p}$ threshold $J/\psi \rightarrow \gamma p\overline{p}$

700 X(pp) $0^+ PS$ 600 (2100) 500 $f_2(1910)$ 400 300 200 100 0.3 0.00.20.1 $M_{p\overline{p}}$ -2m_p(GeV/c²)

- M(X) = 1832 ± 32 MeV
- Γ(X) = 13 ± 40 MeV
- JPC = 0-+
- $B(J/\psi \rightarrow \gamma X) = (9.0 \pm 1.5) \times 10^{-5}$

- BESIII observed quite a number of structures right below the pp threshold
- Recent increase of J/ψ statistics by factor of 4 (1.3B \rightarrow 6B \rightarrow 10B) will be extremely useful to clarify the situation

Research plan

- 2020 Search for $e_{e} \rightarrow 2(p\overline{p})$ above 4 GeV
- 2021 год Search for bound baryon-antibaryon states (threshold enhancements) in $J/\psi \rightarrow \pi$ -pn and search for the decays $J/\psi \rightarrow \rho_0 p \overline{p}$, $J/\psi \rightarrow \rho_+ n p$ and $J/\psi \rightarrow \rho_- n p$

Software development

- Technical contribution to the experiment
- Core famework development and maintnance (beam background simulation, database, software distribution etc.)
- Analysis tools (event generators, ROOT-based analysis framework, parallel PWA software etc.)
- Distributed computing (BES-III Grid & Cloud) DLNP+LIT
- Development of machine learning algorithms for event reconstruction in CGEM/MDC — DLNP+LIT

Project authors

DLNP: O. Bakina, I. Boyko, G. Shelkov, D. Dedovich,

- I. Denisenko, A. Guskov, Yu. Nefedov,
- S. Kotov, A. Zhemchugov
- **BLTP:** V. Bytyev
- LIT: V. Korenkov, G. Ososkov, I. Pelevanyuk

Project funding in 2017-2019

Funding sources (kUSD)

	Total	2017	2018	2019
JINR Budget (theme 1123)	75	25	25	25
External (RFBR-NSFC grant)	20	0	0	20

Main expenses are to cover travel costs to China: 1) Participation in the data taking shifts and technical works 2) Data analysis and discussions, preparation of publications, to present results at international conferences and to host our colleagues from BES-III at JINR

Funding request 2020-2022

Source	Total	2020	2021	2022
JINR Budget (theme 1123)	75	25	25	25
External	20	20	0	0

Main expenses are to cover travel costs to China:
1) Participation in the data taking shifts and technical works
2) Data analysis and discussions, preparation of publications,
to present results at international conferences
and to host our colleagues from BES-III at JINR

Summary

- The BES-III experiment started operation in 2008, and continues to take data. It will remain the world leading project in the τ -charm domain until 2025.
- More than 200 papers are already published, and many more are coming.
- JINR group participates in BES-III since 2005, and made already a visible contribution to the experiment
- BES-III data analysis is ongoing in Dubna, aimed at the study of the charmonium production and decays and the search for the exotic charmonia and charmoniumlike structures
- We ask PAC to approve our proposal to prolong JINR's participation in the BES-III experiment until 2022