

DO LICHEN BIOACCUMULATION DATA TELL THE TRUTH?

Luca Paoli, Andrea Vannini, Fabrizio Monaci, Stefano Loppi

Department of Life Sciences, University of Siena via Mattioli, 4 – 53100 Siena (Italy); paoli4@unisi.it

29th ICP Vegetation Task Force meeting, 29th Feb - 4th March 2016, Dubna

- Lichens are known as reliable bioaccumulators of inorganic and organic atmospheric pollutants.
- They are especially effective in trapping trace elements from the surrounding environment
- It has been demonstrated that the concentrations of trace elements in lichen thalli are correlated with the environmental levels of these elements.

Bioaccumulation in native thalli of the lichen *Flavoparmelia caperata*

Figure 3. Three-dimensional distribution maps of Cd, Cr, Pb and Zn in the study area.

ACCUMULATION OF HEAVY METALS IN EPIPHYTIC LICHENS NEAR A MUNICIPAL SOLID WASTE INCINERATOR (CENTRAL ITALY)

S. LOPPI1*, E. PUTORTÌ¹, S. A. PIRINTSOS² and V. DE DOMINICIS¹

Environmental Monitoring and Assessment 61: 361–371, 2000. © 2000 Kluwer Academic Publishers. Printed in the Netherlands.

Figure 2. Correlation between the concentrations of Al and Fe in the lichen Parmelia caperata.

Figure 1. Map of the study area with location of sampling sites.

L. Paoli et al. / Ecological Indicators 52 (2015) 362-370

Transplanted lichens (6 months - Evernia prunastri) and soil samples

Elements Cd Cr Cu Ni Pb Sb As Co V Tl Mn Hg EF 1.05 0.7 2.01 0.38 1.42 0.94 0.26 0.1 0.33 0.75 0.03 15.37

Landfilling and lichens

Landfilling and lichens

Paoli et al. 2015. Waste Management 42: 67–73.

Table 3

Content of trace elements $(\mu g/g)$ in the lichen *Flavoparmelia caperata* as a function of distance from the landfill. Heavy metals were interpreted in terms of air pollution according to the intervals given in Table 1.

Elements	Landfill	200 m	1500 m	ANOVA
As	0.49 ± 0.10^{a}	0.31 ± 0.05^{b}	$0.18 \pm 0.03l^{\circ}$	F = 29.12 P = 0.000
	Low	Very low	Very low	
Cd	0.62 ± 0.01^{a}	0.37 ± 0.01 ^b	$0.24 \pm 0.03^{\circ}$	F = 32.35 P = 0.000
\frown	Moderate	Low	Very low	
Cr	7.5 ± 4.2^{a}	2.2 ± 0.3^{b}	1.3 ± 0.2^{b}	F = 13.32 P = 0.003
	High	Low	Very low	
Cu	17.8 ± 6.8^{a}	9.9 ± 1.0 ^b	6.6 ± 0.1 ^b	F = 13.08 P = 0.000
	Moderate	Low	Very low	
Fe	1092 ± 413^{a}	525 ± 20 ^b	275 ± 7 ^b	F = 18.67 P = 0.000
\frown	Moderate	Low	Very low	
Ni	6.0 ± 1.6^{a}	3.6 ± 0.3^{b}	4.4 ± 0.2^{ab}	F = 13.82 P = 0.000
\bigcirc	High	Moderate	Moderate	
Pb	22.9 ± 12.6^{a}	6.9 ± 2.4^{b}	3.1 ± 0.1^{b}	F = 13.61 P = 0.000
	Low	Very low	Very low	
Zn	79.5 ± 27.1^{a}	47.5 ± 6.1 ^b	33.6 ± 2.4 ^b	F = 13.02 P = 0.000
	Moderate	Low	Very low	

Landfilling and lichens

Assessment of physiological effects: stress signals were observed in lichens growing in front of the facility, i.e. discoloration, necrosis, membrane lipid peroxidation, lower ergosterol content, higher dehydrogenase activity, decreased photosynthetic efficiency, altered chlorophyll integrity and production of secondary metabolites.

Table 4

Physiological parameters in the lichen *Flavoparmelia caperata* as a function of distance from the landfill: chlorophyll integrity (OD_{435/415}), potential quantum yield of PSII as indicator of photosynthetic efficiency (F_v/F_m), dehydrogenase activity as indicator of lichen viability (A_{492}/g dw), TBARS, thiobarbituric acid reactive substances (µmol/g dw), ergosterol content (mg/g dw), caperatic and usnic acid (% dw). Significant differences between sites (P < 0.05) are indicated by a different letter.

	Parameters	landfill	200 m	1500 m	ANOVA
	OD _{435/415}	0.95 ± 0.02^{a}	1.02 ± 0.04^{b}	1.07 ± 0.03^{b}	F = 25.68
-	F _v /F _m	0.68 ± 0.10	0.73 ± 0.04	0.76 ± 0.02	P = 0.000 F = 2.026
	Dehydrogenase	7.9 ± 3.4^{a}	5.3 ± 1.3 ^b	4.1 ± 1.6 ^b	P = 0.161 F = 3.79
	TBARS	19.8 ± 4.6 ^a	14.7 ± 3.5 ^a	7.3 ± 1.4 ^b	P = 0.042 F = 12.41
	Ergosterol	0.39 ± 0.09^{a}	0.43 ± 0.05^{a}	0.64 ± 0.11 ^b	P = 0.000 F = 8.639
	Caperatic acid (%	4.7 ± 3.2 ^a	7.7 ± 0.9 ^{ab}	8.6 ± 0.8^{b}	P = 0.007 F = 3.74
-	dw) usnic acid (% dw)	1.37 ± 0.14^{a}	1.07 ± 0.31 ^c	1.19 ± 0.31 ^{ab}	P = 0.048 F = 10.08 P = 0.003

A cement industry is a source of dust pollution, from quarrying and grinding of the raw material, kiln operations, transportation, packing and dispatch of the cement. Airborne pollutants related to combustion processes are also emitted, especially during kiln operations and power generation, including SO_2 , NO_x , particulate matter, heavy metals and potentially dioxins and furans in case of waste burning.

Sources of pollution

dust

Exhaust gases and dust released to the atmosphere from cement plants may degrade air quality and create considerable environmental pollution

Atmospheric pollutants

Ca content in native X. parietina

L. Paoli et al. / Ecological Indicators 40 (2014) 127-135

132

Ca content in transplanted E. prunastri

Bioaccumulation: E. prunastri transplants

Exposed to Control (EC) ratios indicated that the number of chemical elements with a significant accumulation in *E. prunastri* increased along with the duration of the exposure

Accumulated elements according to Exposed to Control ratios in thalli of *Evernia prunastri* transplanted in the study area (EC = 1.25 - 1.75; *EC = >1.75 - 3; **EC > 3)

Sampling sites	days	Accumulated elements	
	30	Ca, As*, Fe, Ni**, Ti, V, Zn	
Cement mill	90	Ca**, As**, Cr, Cd, Fe*, Mn, Ni, Pb, Ti*, V*, Zn	
	180	Ca**, As**, Cr, Cd, Fe, Ni, Pb, S*, Ti, V*, Zn	
	30	Ca, Al, Cd, Ni	
Limestone quarry	90	Ca*, Al*, As*, Cd, Fe, Hg, Ni*, Pb, V, Zn	
	180	Ca, Al*, As*, Cd, Hg*, Ni**, Pb*, S, Zn*	
	30	Ca*, Al**, As*, Fe**, Mn, Ni, Ti**, V*	
Paleobasalt quarry	90	Ca, As*, Cd, Fe**, Mn, Ni*, Pb, Ti**, V*, Zn	
	180	Ca, Al*, As**, Cd*, Cu*, Cd, Fe**, Hg*, Mn*, Ni*, Pb*, S*, Ti*, V*, Zn*	
	30	Ni	
Urban (1.5 km)	90	Al*, As, Ni**, Zn	
	180	Ca, Al*, As*, Fe, Hg, Ni*, Pb, S*, Zn	
	30	Al*, As, Zn	
Agricultural (>3 km)	90	As*, Cd, Cr, Fe, Ni, Pb*, S, V, Zn*	
	180	Ca, As*, Cd, Cu, Fe, Ni*, Pb*, S*, Zn*	

Magnetic properties

Environ Sci Pollut Res DOI 10.1007/sl 1356-016-6203-6

BIOMONITORING OF ATMOSPHERIC POLLUTION: POSSIBILITIES AND FUTURE CHALLENGES

Magnetic properties and element concentrations in lichens exposed to airborne pollutants released during cement production

Luca Paoli ¹ · Aldo Winkler ² · Anna Guttová ³ · Leonardo Sagnotti ² · Alice Grassi ¹ · Anna Lackovičová ³ · Dušan Senko ³ · Stefano Loppi ¹

1.1

Traffic and lichens

Aprile et al., 2009. Environ Monit Assess DOI 10.1007/s10661-009-0796-x

K.I.A. Kularatne, C.R. de Freitas / Environmental and Experimental Botany 88 (2013) 24-32

K.I.A. Kularatne, C.R. de Freitas / Environmental and Experimental Botany 88 (2013) 24-32

Fig. 1. A conceptual lichen–air model of how the lichen thallus achieves equilibrium with mean pollution level of ambient air. Pollutant concentrations in the atmosphere, surface layer of the thallus and the interior tissue of the thallus are A_p , S_p , and I_p , respectively. K_1 and K_2 are equilibrium constants. R is pollution accumulation rate, from air to surface layer (R_1), surface layer to air (R_2), surface layer to interior tissue (R_3), and interior to surface layer (R_4).

Heavy metals in the lichen thallus may occur as...

- particles adsorbed on the cortex or within intercellular spaces;
- ions bound to extracellular and intracellular exchange sites;
- soluble intracellular ions.

the uptake of soluble cations may occur by means of passive reversible binding to anionic sites.

Cation exchange properties

The contemporary supply of positively charged elements may displace the original cations from their extracellular exchange sites

Concentrations in lichen thalli

Solutions

Bioaccumulation data might result in an underestimation of some elemental levels measured in biomonitoring studies

Спасибо!