An epidemiological assessment of stomatal ozone flux-based critical levels for visible ozone injury in Southern European forests

Pierre Sicard (ACRI-HE, France) pierre.sicard@acri-he.fr

Alessandra De Marco (ENEA, Italy) Elena Paoletti (IPP-CNR, Italy) Laurence Dalstein-Richier (GIEFS, France)

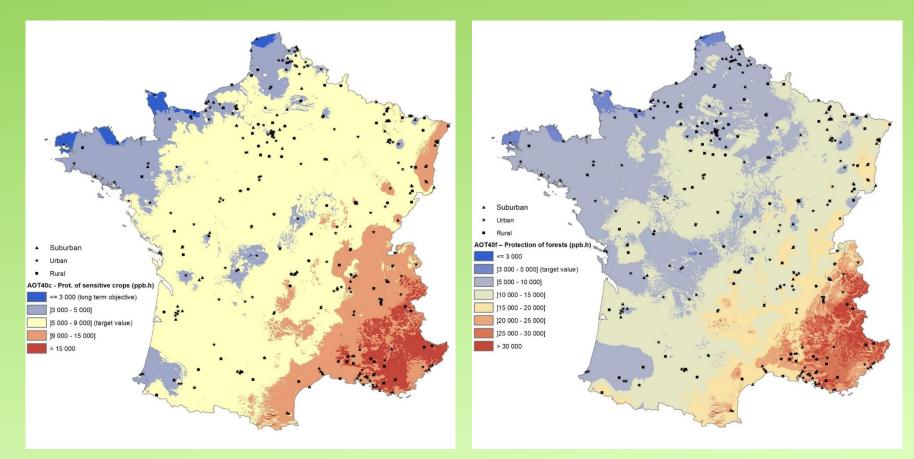
ICP-Vegetation, 29th Task Force Meeting Dubna (Russian Federation) 1-4 March, 2016

Background & Context

Surface ozone (O_3) is the **most worrying** air pollutant, with harmful effects on human health, crops & forests in Europe (e.g. Paoletti, 2006; Mills et al., 2011, WHO, 2013) and may become worse in the future.

In southern Europe, surface O_3 levels are high enough to induce adverse effects in the field (Sicard et al., 2013).

The calculation of vegetation-relevant metrics, over a region, estimates the relative severity of O_3 exposures.


However, the current exposure-based standards for protecting vegetation are **not representative** of actual field conditions. A biologically-sound stomatal flux-based standard was proposed, although critical levels (CL) for protection still need to be validated.

By a large-scale field investigation in Southern Europe, the main objectives are :

- To evaluate the performance of O₃ risk metrics, i.e. POD0, POD1 and AOT40.
- To define which threshold Y is the most biologically-based.
- To define the best time-window of PODY accumulation.
- To suggest new epidemiologically-based O₃ CLs for forest protection against visible O₃ injury.

Background & Context

Surface O_3 levels in the **South-eastern France are higher** than in the rest of Europe and represent a **potential threat** to vegetation (*see Poster session*).

Figures 1: **Spatial distribution (by local interpolation)** of surface ozone metrics in France based on 332 stations over the time period 1999-2012: AOT40 for agricultural crops (left) and forests (right).

Description of the works

A standard for forest protection is biologically relevant when it translates into real-world forest impacts.

To derive new stomatal flux-based critical levels (CLef), stomatal O₃ fluxes were modelled & correlated to real plant damages (visible injury).

Main steps:

(1) In field campaigns - 2 years : **visible injury** (visible foliar O_3 injury, crown defoliation & discoloration) were evaluated. In agreement with the European protocol defined by the ICP-Forests & carried out by 2 trained **experts**.

(2) Meteorological data, soil data and O_3 concentrations were obtained from the coupled **WRF-CHIMERE** modelling system & Stomatal O_3 fluxes were modelled (**DO3SE**).

(3) Three O_3 indices, i.e. the accumulated exposure AOT40 & the accumulated stomatal flux with & without an hourly threshold of uptake (POD1 & POD0) were correlated to measured forest-response indicators.

Location of experimental plots

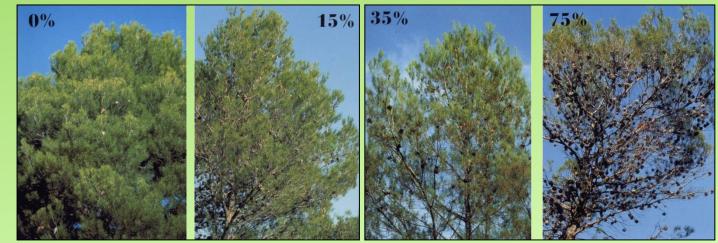
Figure 2: Location of experimental plots in South-eastern France and North-western Italy

North-western Italy (24 plots)

Broadleaved trees: Fraxinus excelsior, Robinia pseudoacacia, Fagus sylvatica, Quercus petraea, Q. cerris) + Conifer species: P. sylvestris, Picea abies, Abies alba and P. cembra.

South-eastern France (30 plots)

Focused on 2 O_3 -sensitive conifer tree species: *Pinus halepensis* and *Pinus cembra*.


O₃ produces specific symptoms on needles of *P. cembra* & *P. halepensis:* valuable bioindicator species for O₃ stress.

In-field campaigns: visible injury

The survey was based on **1080 trees** over 54 plots (20 trees per site).

Discoloration: to estimate the global color with 5 scorings: 0 (green) to 4 (yellow tree).

Crown defoliation: Assessed in 5% steps (0-10%: healthy, 15-25%: warning phase, 30-60%: alert phase).

Pinus halepensis

In Europe, forest monitoring has concentrated on crown defoliation & discoloration as indicators of forest **health and vitality**, while visible foliar O_3 injury is usually the **first unequivocal marker** of O_3 phytotoxic levels (Grulke, 2003; Matoušková et al., 2010).

Campaigns for O₃-induced injury

For broadleaf plants

Symptoms observed and scored on 5 trees & 5 branches (30 leaves):

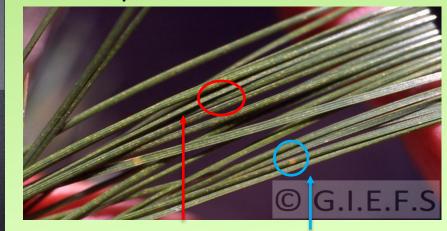
- Red or brown spots Interveinal stipple
- Chlorosis: loss of chlorophyll
- **Flecking**: brown or black areas on the upper surface (death of cells)

For conifers

5 trees & 5 branches (30 needles) are removed from the upper third of the crown layer.

- Tipburn : death of cells (red or brown)
- **Chlorotic mottle**: discrete patches of yellow tissue on needles

Fagus sylvatica



Bronzing + stippling

Pinus halepensis

Mottling (diffuse) + insect

Microscopical analysis

First visible effects of O_3 appear on the palisade mesophyll chloroplasts. Epidermis and spongy mesophyll remain intact in the first steps of the injury.

Pinus cembra: 2-year old needles

- ✓ Chloroplasts lysis
- ✓ Tannins and/or anthocyanins presence (red pigments)
- ✓ Large intercellular spaces
- ✓ Necrosing chlorotic spots with mesophyll lysing and collapsing

Symptomatology

Our results allowed ranking the tree species on the basis of their sensitivity to ambient O₃.

For conifers species:

```
P. cembra can be considered as highly O<sub>3</sub>-sensitive species
P. halepensis = moderate O<sub>3</sub>-sensitivity species
P. sylvestris = low O<sub>3</sub>-sensitivity species
Abies alba & P. abies were not impacted and may be classified as O<sub>3</sub>-tolerant species
```

For broadleaved species:

F. excelsior = highly O_3 -sensitive species *F. sylvatica* & *R. pseudoacacia* = moderate O_3 -sensitivity species *Quercus species* (i.e. *Q. cerris* & Q. petraea) = O_3 -tolerant species

F. sylvatica is sometimes considered as a highly sensitive species (e.g. Nunn et al., 2002; Deckmyn et al., 2007).

Estimation of AOT40

Estimation of AOT40

Sum of the exceedances above 40 ppb over the daylight hours during the growing season (UNECE, 2010):

$$AOT40 = \int \max((C-40), 0) dt$$

where C is hourly O_3 concentration (ppb) and *dt* is the time step (1h).

Accumulating evidence suggests that the responses of vegetation to O_3 is more related to the **absorbed dose**, through stomata, than exposure.

Estimation of PODY – DO3SE model

Estimation of PODY: DO3SE model

PODY (nmolO₃.m⁻².s⁻¹): accumulated stomatal ozone uptake above a species-specific threshold Y:

$$PODY = \int (POD - Y) \cdot dt$$

DO3SE model was applied with 2 thresholds (nmolO₃.m⁻².PLA.s⁻¹):

- ▶ 1 as recommended by UNECE (2010)
- > 0 Any O₃ molecule entering into leaves may induce a metabolic response (Musselmann *et al.,* 2006)

DO3SE model was applied for 3 time windows :

- Hours from 08:00 to 20:00 CET, a practical definition adopted by the Directive 2008/50/CE
- Hours with a global radiation > 50 W.m⁻², as recommended by UNECE (2010)
- Hours with a global radiation > 0 W.m⁻², assuming that stomata open even with < 50 W.m⁻² light (Launiainen et al., 2013; Elhaddad et al., 2014)

Estimation of PODY – DO3SE model

Leaf-level stomatal conductance to water vapour (g_{sw}) was estimated using the multiplicative model (Emberson *et al.*, 2000) and the parameters suggested in UNECE (2010):

$$g_{sw} = g_{max} \cdot f_{phen} \cdot f_{light} \cdot max \left\{ f_{min}, \left(f_{temp} \cdot f_{VPD}, \left(f_{SWC} \right) \right) \right\}$$

Soil water content = a key variable affecting the severity of visible foliar O_3 injury was included in DO3SE.

Species-specific parameterization

Table 2: Parameters used in the stomatal flux-based model, according to UNECE (2010)					
Parameter	Mediterranean Europe	Continental Central Europe			
	Pinus halepensis	Conifers	Deciduous		
g _{max} [mmol m ⁻² s ⁻¹]	215	200	200		
light _a [dl]	0.013	0.010	0.006		
T _{opt} [°C]	27	14	16		
T_{min} [°C]	10	0	5		
T _{max} [°C]	38	35	33		
VPD _{min} [kPa]	3.2	3.0	3.1		
VPD _{max} [kPa]	1.0	0.5	1.0		
$f_{min} \text{ [mmol } m^{-2} \text{ s}^{-1} \text{]}$	0.15	0.16	0.13		
SGS	1 st January	1 st April	1 st April		
EGS	Time of the survey	Time of the survey	Time of the survey		

Spearman test: coefficients

POD0 and POD1, calculated over different time windows: **8am-8pm (A)**and for hours with a global radiation exceeding **50 W.m⁻² (B)** and exceeding **0 W.m⁻² (C)** over the 24h exposure period of time.

	AOT40	A_POD0	A_POD1	B_POD0	B_POD1	C_POD0	C POD1	
All species								
Discoloration	0,3921 ***	0.3339 **	0.2494 **	0.3827 **	0.2488 **	0.3562 **	0.2427 **	
Defoliation	0.4391 ***	0 3493 **	0 2444 **	0.3695 **	0.2383 **	0.3390 **	0.2245 **	
O₃ visible injury	ns	0.4236 ***	0.3142 ***	0.3596 ***	0.3432 ***	0.4958 ***	0.3590 ***	
Conifers								
Discoloration	0.6463 ***	0.3783 ***	0.3195 ***	0.3794 ***	0.2278 *	0.4149 ***	0.3021 **	
Defaliation	0.7170 ***	nc	nc	ns	ns	ns	ns	
O₃ visible injury C+1	ns	0.3786 ***	0.3360 ***	0.3641 ***	0.3824 ***	0.4412 ***	0.3784 ***	
O3 visible injury C+2	ns	0.4048 ***	0.3561 ***	0.3672 ***	0.4035 ***	0.4646 ***	0.4076 ***	
Pinus cembra								
Discoloration	ns	0.3110 *	0.3866 **	0.3903 **	ns	0.4532 **	ns	
Defoliation	0.4945 ***	ns	ns	ns	ns	ns	ns	
O3 visible injury C+1	ns	0.3408 **	0.3331 *	0.4663 **	0.3255 *	0.5912 ***	0.3143 *	
O3 visible injury C+2	ns	0.3857 *	0.3549 *	0.4447 **	0.3061 *	0.5652 ***	ns	
Pinus halepensis								
Discoloration	0.3075 *	ns	ns	ns	ns	ns	0.3853 *	
Defoliation	0.3389 **	ns	ns	ns	ns	ns	ns	
O3 visible injury C+1	ns	ns	ns	ns	0.3831*	0.4120 **	0.3900 *	
O3 visible injury C+2	ns	0.5426 **	0.5771 **	0.5751 **	0.5859 **	0.6067 **	0.6207 ***	
Pinus sylvestris								
Discoloration	0.7427 **	ns	ns	ns	ns	ns	ns	
Defoliation	0.3120 *	ns	ns	ns	ns	ns	ns	
O3 visible injury C+1	ns	ns	ns	ns	ns	0.3833 *	0.3667 *	
O3 visible injury C+2	ns	0.3950 *	ns	ns	ns	0.4500 *	ns	
Broadleaves								
Discoloration	ns							
Defoliation	0.3587 **	ns	ns	0.2793 *	0.2874 *	0.2862*	ns	
O₃ visible injury	ns	0.3233 *	ns	ns	ns	0.3600 **	ns	

AOT40 significantly correlated with aspecific symptoms, i.e. crown discoloration and crown defoliation.

AOT40 not correlated with visible foliar O_3 injury.

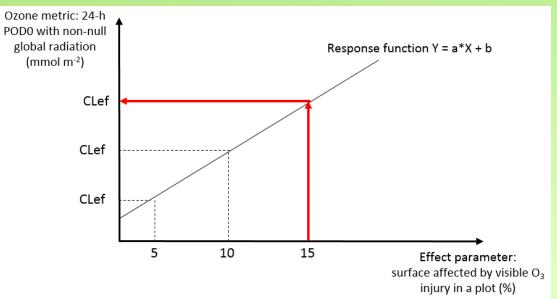
Specific O₃-induced symptoms are **only** correlated with PODY.

POD0 better correlated with visible O_3 injury than POD1 and AOT40.

Stronger coefficients obtained with POD0 calculated for hours with a global radiation **exceeding 0 W.m⁻²**.

p < 0.01***; 0.01 < p < 0.05**; 0.05 < p < 0.1*; p > 0.1: non-significant (ns)

Derivation of Critical Levels


On the basis of data from controlled-condition experiments, the UNECE calculated AOT40- and PODY-based critical levels for growth and yield reductions of several crop and forest species. Similarly, **we correlated PODY & AOT40 to real-world forest impacts** in terms of different effect parameters.

Based on previous results, we showed that POD0 (for hours with a non-null solar radiation) was strongly correlated with visible O₃ injury \rightarrow Flux-effect functions.

New **species-specific CLef** were derived from flux-effect functions, statistically significant (p < 0.05) by joining data from all plots and years.

Hoshika et al. (2012) showed that gs decreased sharply above **5% injury** and did not change any more above 15% injury.

CLef was derived from flux-effect functions for **5**, **10** and **15%** of visible foliar O_3 injury.

Recommended flux-based critical levels (CLef) for forest protection against visible O₃ injury

Recommended CLef, established with different thresholds of visible injury, and percentages of plots that can be protected using the CLef values.

Tree species	CLef (mmol m ⁻² B_POD0)		Response function	r	<i>p</i> value	Percentage of protected plots			
	5%	10%	15%				5%	10%	15%
All species	20.0	21.0	22.0	Y = 0.19 * X + 19.1	0.51	< 0.01	45	53	74
Conifers	20.8	22.4	23.9	Y = 0.31 * X + 19.3	0.44	< 0.01	48	58	80
Pinus cembra	15.9	17.3	18.7	Y = 0.28 * X + 14.5	0.60	< 0.01	25	45	62
Pinus halepensis	26.5	29.2	31.9	Y = 0.54 * X + 23.8	0.59	< 0.05	70	81	92
Broadleaves	18.4	19.1	19.9	Y = 0.15*X + 17.6	0.38	< 0.05	71	740	90
Fagus sylvatica	21.6	23.4	25.2	Y = 0.36*X + 19.8	0.56	< 0.05	50	66	79
Fraxinus excelsior	16.9	17.7	18.6	Y = 0.16*X + 16.2	0.61	< 0.05	52	60	76

To **maximize** the percentage of protected sites, CLef is derived from flux-effect functions with 15% as a threshold of visible foliar O_3 injury per plot.

As an example, we proposed:

CLef of **32 mmol.m⁻² PLA** for moderate O₃-sensitive species (e.g. *P. halepensis*) CLef of **19 mmol.m⁻² PLA** for high O₃-sensitive species (e.g. *P. cembra*)

```
CLef of 25 mmol.m<sup>-2</sup> PLA for moderate O_3-sensitive species (e.g. Fagus sylvatica)
CLef of 19 mmol.m<sup>-2</sup> PLA for high O_3-sensitive species (e.g. Fraxinus excelsior)
```

Conclusions & Perspectives

We showed that the performance of POD0, as a descriptor of O_3 risk to forests, is better than POD1 and AOT40 when visible foliar O_3 injury is considered.

For **forest protection against visible O₃ injury**, we recommend the **use of PODO** calculated for hours with a non-null solar radiation over 24-h. **Nocturnal O₃ levels** will be higher in the future (*see Poster session*).

In the short-term, AOT40 should be replaced with the flux concept & POD0 has both **biological significance** and **practicality** in usage.

As a **main conclusion**, we propose to use generic epidemiologically-based CLef, i.e. **20 & 24 mmol.m**⁻² for broadleaved species & conifers, respectively. Eventually, a species-specific CLef based on the O₃-sensitivity.

To date, CL were derived from controlled-condition experiments and from **biomass loss** as plant parameter (e.g. UNECE, 2010) while visible foliar O_3 injury & crown symptoms, under field conditions, were used here.

The presence of foliar injury does not always coincide with measurable biomass losses due to O_3 (Chappelka and Samuelson, 1998). Therefore, we recommend that a **large-scale epidemiological investigation**, similar to our approach, is also applied to biomass losses as measured in real-world forests.

Спаси́бо за приём Thanks