Progress towards the realization of the MPD project

Within the JINR theme 02-0-1065-2007/2019

Adam Kisiel (WUT)

On behalf of the MPD Collaboration

Programme Advisory Committee for Particle Physics 50th Meeting January 21-22, 2019

Outline

□ Introduction

- **Progress in MPD project realization:**
 - Recent results from MPD simulation
 - MPD TDR preparation
 - MPD mass-production: readiness status
 - Formation of the MPD Collaboration
- □ Summary

MPD detector at NICA (Stage'1 setup)

3

Strangeness production at NICA: news on (anti)hyperons

V.Vasendina, A.Zinchenko, V.Kolesnikov (VBLHEP)

Study of the centrality dependence for hyperon spectra & yields

Data set: 2M minbias Au+Au @ 11 GeV (PHSD) **MPD setup:** TPC & TOF, ideal centrality binning (no FHCAL) **Selection criteria:** $|\eta| < 1.3$, $N_{hits} \ge 10$ + standard quality/analysis cuts **Realistic track reconstruction**: clustering in TPC **Realistic PID**: combined dE/dx+TOF

Analysis: secondary vertex finding technique

- **PV** primary vertex
- V₀ vertex of hyperon decay
- dca distance of the closest approach
- path decay length

Reconstruction of the midrapidity invariant spectra of Lambda

- Reconstructed spectra are in a reasonable agreement with Monte Carlo
- Similar analysis for other specie and rapidity bins is currently underway

MPD prospects for anisotropic flow studies

P. Parfenov, A.Taranenko (MEPhl), I.Selyuzhenkov (GSI, MEPhl)

≥0.15F > 0.15 Au+Au, UrQMD, $\sqrt{s_{NN}}=5$ GeV, 10-20% Au+Au, UrQMD, √s_{NN}=11 GeV, 10-20% • true • true 4M Au+Au events at 5 and 11 GeV 0.1 0.1 o reco o reco Recent MPD reconstruction chain, realistic PID 0.05 0.05F N_{points}>32, DCA cut, 0.2<p_τ<2 GeV/c, |η|<1.5 Hadronic shower simulation in FHCAL (GEANT3,4) -0.05 -0.05 Ор Ор Event plane reconstruction with FHCAL -0.1 -0.1 Δπ $\Delta \pi$ -0.15 -0.15 0.5 1.5 0.5 1.5 p_{_}, GeV/c p_{τ} , GeV/c

Both directed and elliptic flow parameters are consistent with those from MC simulation

Resonance reconstruction with the MPD detector at NICA

V.Riabov and M.Malaev (PNPI)

FG - mixed BG Mass 1.02 ± 0.00 4000 Yield 42.95 ± 3.16 0.5M minbias Au+Au@11 GeV by UrQMD3.4 σ (mass.res.) 0.003322 ± 0.000536 3000 |Zvrtx| < 50 cm number of TPC hits > 39, TPC sector edges cut $\phi \rightarrow K^+ K^-$ 2000 $|\eta| < 1.0$, pT > 50 MeV/c 1000 $|DCA(x,y,z)| < 2\sigma$ **Resonances at MPD – feasible!** TPC+TOF PID probability $(\pi/K/p) > 0.75$ Pair cut: |y| < 1.00.98 1.02 1.04 1.06 1.08 1.1 Combinatorial background: event mixing ($|\Delta_{zvrtx}| < 2 \text{ cm}$, $|\Delta_{Mult}| < 20$) M_{KK} (GeV/c²) Counts χ^2 / ndf 26.05 / 17 Sounts Counts χ^2/nd Prob 0.07349 $K^* \rightarrow K\pi$ Prob ↓ Ks True signal (MC) Mass 0.8957 ± 0.0013 1.517 ± 450 Mass *→pK 80 Yield 5788 ± 340. Yield FG - mixed BG 8000 σ (mass res. σ (mass.res. 0.009295 ± 0.003379 0g -8.906e+004 + 4.216e+004 5 573e+005 + 2 38 350 p1 2.541e+005 ± 8.894e+004 -1.661e+005 ± 1.334 6000 $\rho + K^{*0} + \omega$ p2 -1.415e+005 ± 4.592e+004 $0^{0} \rightarrow \pi\pi$ 2 300 F True signal (MC) 4000 250 FG - mixed BG 2000 200 f0 150 - • f2 True signal (MC) 100F -2000 FG - mixed BG 50 F 0.6 0.8 1.2 1.4 -4000 ± $M_{\kappa\kappa}$ (GeV/c²) 0 🗔 1 45 1.5 1.55 1.6 1.65 1.75 1.4 0.4 0.60.8 1.2 1.6 M_{KK} (GeV/c²) M_{kk} (GeV/c²)

 χ^2 / ndf

Prob

Count

True signal (MC)

19.34 / 12

0.0807

Ev-by-Ev fluctuation: cumulants of conserved quantities

A. Mudrokh (VBLHEP)

 $S\sigma = \frac{C_3}{C_2} = \frac{\chi_3}{\chi_2}$

11 GeV

9 GeV

7 GeV

4 GeV

- Au+Au collisions central (0<b<1 fm), only 50k UrQMD events!
- Cumulants within |y| < 0.5 and $0.3 < p_{\tau} < 1.8$ GeV/c ($0.4 < p_{\tau} < 0.8$ GeV/c to compare with STAR)
- Combined PID (protons instead of net-protons)

Cumulant ratios are directly compared to susceptibilities and allow fireball volume cancellation

- $\kappa\sigma^2 = \frac{C_4}{C_2} = \frac{\chi_4}{\chi_2}$ **Comparison with data in the STAR acceptance Indicates** correctness of the feasibility study procedure and results
- MPD provides a larger phase-space for E-by-Ev studies (from 30 to 70 PIDed protons/event in the rectangular area)

Status of MPD TDRs

http://indico.jinr.ru/Projects/NICA/Detectors/DetectorAdvisoryCommitee

MPD DAC: H. Gutbrod, I. Tserruya, H.-R. Schmidt, N. Xu, L. Musa

MPD system	Date of recent evaluation	Comments
TPC	30.01.2018	Per DAC request, presented Addendum to TDR on FEE based on PASA and ALTRO
TOF	30.01.2018	Recommendations from DAC implemented, Got green light (latest version from 17.11.2018)
FFD	22.07.2017	Got green light (22/06/2016)
ECAL	30.01.2018	ECAL TDR updated after recent discussion (latest version from 16.1.2019)
FHCAL	22.07.2017	All recommendations from DAC implemented, Got green light (latest version from 28.05.2018)
DAQ	16.12.2015	Version 6 (June'18), still under development (latest version from 27.08.2018)
Computing	2018	VBLHEP+LIT project. Version 1.03. Still progressing

NICA/MPD infrastructure: progress

- MPD Hall will be soon ready for equipment installation!
- Preparatory works: designing place, tooling and service systems for MPD assembling and maintenance

Working place inside/outside of the MPD Hall

- Place & tooling for MPD assembling
- Service & supply systems (cryo, cooling, power, etc.)

Magnet fabrication: ASG (Genova) & Vitkovice HM

End of 2018 – SC coils are ready March 2019 – Solenoid is ready May 2019 – Transportation to Dubna Oct 2019 – Assembling of Magnet Yoke and Solenoid at JINR Nov 2019 – Magnetic field measurements

Delivered to JINR

MPD TPC status

SAMPA chips (4500 pc) – payment to CERN done

Eight cards pilot system

 Trigger, clock, reset distr. board .
System controller.
64-ch SAMPA- FEC.
HSSI (up to 2.5 GBps; up to 8 FECs).
Data/conf. full duplex HSSI port; clock 40 MHz, trigger, reset.

Gas system

Concentrator ASIC design (MEPHI)

is intended for data concentration and transfer from two SAMPA chips to counting room via fast bi-directional interface having 2.56 Gb/s speed for getting data out in trigger mode, rad, hard

MPD TOF status

Fast Forward Detector

 Development of experimental stand for test measurements with cosmic muons and laser
Development of FFD electronics (prototyping)

٠

- Development and test of laser system
- Final design of FFD modules and FEE board
- Development of FFD mechanics
- Final design of cable system
- Study of temperature conditions into FFD module and cooling

FFD,

Production of the scintillation planes

The pulse shapes measured with laser for three cases of optical fiber inputs

Test of the laser system for FFD calibration

PiLas laser with 30-ps pulse width and 405- nm wavelength

1. PiLas control unit

- 2. box with laser head and optical system
- 3. quartz fiber bundles 7.5 m

Pb+Scint. (14 X₀,4x4 cm²) WLS fibers + MAPD

MPD Electromagnetic Calorimeter (ECAL)

I. Tiapkin (VBLHEP), Yi Wang (Tsinghua, China)

- Finalizing ECAL geometry (design and simulation) ITEP team
- Mass-production technology testing 3 workshops at JINR, IHEP, and Tsinghua
- ECAL integration scenario JINR and ProgressTech Ltd.
- TDR preparation All

Status of FHCAL

2 x **44** modules (15 x 15 cm² each) located left and right at ~3.2 m from the **IP**)

transverse granularity allows to measure:

- the reaction plane with accuracy ~ 20°-30°
- the centrality with accuracy ~ **10%**.

light collection WLS-fibers & SiPM

Beam tests with 1-10 GeV/c protons were done

According to the agreement with INR RAS about 80% of FHCal modules are already produced and tested with cosmic muons.

Analog and readout electronics: *Developed and in production now.*

18

MCORD - MPD Cosmic Ray Detector for NICA Polish Consortium NICA-PL

Proposal to be discussed at MPD DAC meeting (23 Jan 2019)

The **M**PD **Co**smic **R**ay **D**etector (MCORD) is needed for:

- discrimination of signals induced by cosmic showers (mainly muons).
- off-beam calibration of the MPD response to muons,
- provide the opportunity for the early tests of the integration of the Subsystems, Triggering, Experiment Control Systems and others.

Plastic scintillators with light readout as most suitable candidates for a detector module. In the initial stage need to choose the optimum shape of scintillators, the configuration of photo-detectors and readout electronics.

TH barrel part consists of little bit more than 500 scintillator modules and about 1000 channels of readout electronics

MultiPurpose Detector (MPD) Collaboration: >4

>430 members

Baku State University, NNRC, **Azerbaijan**; University of Plovdiv, **Bulgaria;** University Tecnica Federico Santa Maria, Valparaiso, **Chile**; Tsinghua University, Beijing, **China**; USTC, Hefei, **China**; Huizhou University, Huizhou, **China**; Institute of Nuclear and Applied Physics, CAS, Shanghai, **China**; Central China Normal University, **China**; Shandong University, Shandong, **China**;

IHEP, Beijing, China; University of South China, China; Three Gorges University, China; Institute of Modern Physics of CAS, Lanzhou, China; Palacky University, Olomouc, Czech Republic; NPI CAS, Rez, Czech Republic; Tbilisi State University, Tbilisi, Georgia; *Joint Institute for Nuclear Research;* UNAM, Mexico City, Mexico; Institute of Applied Physics, Chisinev, Moldova; WUT, Warsaw, Poland; NCNR, Otwock – Świerk, **Poland**; UW, Wrocław, Poland; Jan Kochanowski University, Kielce, **Poland**; Belgorod National Research University, Russia; INR RAS, Moscow, Russia; MEPhI, Moscow, Russia; Moscow Institute of Science and Technology, **Russia**; North Osetian State University, Russia; NRC Kurchatov Institute, ITEP, Russia; Kurchatov Institute, Moscow, Russia; PNPI, Gatchina, Russia; SINP, Moscow, Russia; SPSU, St. Petersburg, **Russia**;

Second MPD Collaboration Meeting 29-30 October 2018

New member institutes (now 32 institutes from 10 countries + JINR) Spokesperson election: Adam Kisiel (WUT, Poland) IB Board Chair election: Fuqiang Wang (ZJHU, China) Project manager endorsement: Slava Golovatyuk (JINR)

MPD Collaboration: organizational activities

- Formation of structures defined in Collabotaion Bylaws:
 - Endorsement of Deputy Spokespersons
 - Victor Riabov (SPSU, Russia)
 - Zebo Tang (USTC, China)
 - Preparation of the Memorandum of Understanding for each institution
 - Grouping by Country? Form of involvement of state funding agencies?
 - Elections for the Executive Council
 - Formation of the Detector Council
 - With the help of the Executive Council the following structures will be created:
 - Physics Working Groups the definition of physics topics, selection of Convenors, assignment of Collaborators to Physics Groups
 - Formation of formal software and computing structure, assignment of software coordinator
 - Discussion on the possibilities and available resources for the MPD Computing paradigm
 - Formation of the Talks Committee

Summary

- Substantial progress in MPD project realization (Magnet, TPC, TOF, FFD, FHCAL, ECAL, Engineering, Integration, Feasibility studies)
- Efficient MPD DAC evaluation process: Stage'1 sub-systems carry out regularly, next meeting on 23/01/2019, several TDRs close to final approval
- The international collaboration around the NICA is growing. New partners are invited to join NICA
- MPD Collaboration is in the process of creation of organizational structures

Thank you for your attention!