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Short history of neutrino

Radioactivity

1895: Discovery of X-rays by
Röntgen (NP: 1901)
1896: Discovery of radioactivity
from uranium salts by Becquerel

1898: Discovery of two more
radioactive nuclei: polonium and
radium by Pierre and Marie Curie
(NP: Becquerel and Pierre and
Marie Curie: 1903)

1899: Rutherford coined a the
terms alpha and beta rays and
discover the concept of
radioactive “half-life”

1902: Rutherford and Soddy
“Theory of Atomic Disintegration”
disproving an ancient idea of
indivisible atoms

1903: Rutherford coined a term
gamma ray. α, β, γ differ by their
penetration power
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Short history of neutrino

First puzzles of β decay and wrong statistics

Energy conservation dictates that
energies of α, β, γ should be a
difference between energy levels of
initial and final nuclei
α and γ radioactivity obey this law
l Why γ spectrum has peaks and

continuous parts?

1913: Chadwick discovered that β
spectrum is continuous. Seems to be
a violation of energy conservation
law!
Another problem of that times (not
related to continuous β spectrum at
first glance) wrong statistics of 147 N
(and similarly of 63Li, etc):

Today: 7p+ 7n = 14 fermions (Bose
statistics)
Old times: 14p+ 7e = 21 fermions
(Fermi statistics)
The experiment: 147 N has Bose
statistics. How?!
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Short history of neutrino

A hypothesis of Pauli

1930: Pauli hypothesized an existence of a neutral light fermion with
mn < 0.01mp in nucleus. He called it neutron. Pauli attempted to solve
both problems:
l Continuous β spectrum: “neutron” is emitted together with electron sharing

total allowed energy and momentum between them two.
l Wrong statistics of 147 N: 14p+ 7n+ 7e = 28 fermions = Bose statistics

The idea was brave (only e−, p, γ existed at that times as elementary
particles) but not fully correct:
l Emitted “neutron” was actually another particle: neutrino (named by Fermi)
l 14

7 N nucleus was actually: 7p+ 7n = 14 fermions (Bose statistics) with
heavy neutron mn > mp discovered by Chadwick in 1932

Pauli presented his hypothesis to public in 1933. Fermi formulated a
quantum theory of β decay two months later
l Fermi submitted a letter to Nature. It was rejected: abstract speculations too

far from physical reality to be of interest to the readers
l Fermi published his theory in Zeitschrift für Physik in 1934
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Short history of neutrino

Discoveries of neutrino

ν̄e discovery

F. Reines and C. L. Cowan, Jr used inverse beta decay reaction to
detect ν̄e from a nuclear reactor: ν̄e + p → n+ e+

e+ + e− → γγ and n+ 108Cd → 109Cd∗ → 109Cd+ γ

1956: published two papers about discovery.

1995: NP to F. Reines
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Short history of neutrino

Discoveries of neutrino

νµ discovery

1962: L. M. Lederman, M. Schwartz and J. Steinberger discovered that
there is another type of neutrino νµ produced in association with muon
π+ → µ+ + νµ

1988: NP to L. M. Lederman, M. Schwartz and J. Steinberger
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Short history of neutrino

Discoveries of neutrino

ντ discovery

2000: DONUT experiment discovered that there is yet another type of
neutrino ντ produced in in association with tau lepton D+

s → τ+ + ντ

4 ντ candidates in excess of the expected background (< 0.2 events)
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Short history of neutrino

Discoveries of neutrino

Three flavours of neutrino are discovered. They are named: electron,
muon and tau neutrino and are shortly written as νe, νµ, ντ .
The flavour seemed to be conserved:

These are possible:

νµ + n → µ− + p, τ− → π− + ντ

These are not possible

νµ + n ↛ e− + p, τ− ↛ π− + νµ

It was discovered later that flavour is not conserved. We will discuss it in
what follows.
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Short history of neutrino

Number of neutrino types

From cosmology. Planck 2015:
Nν = 3.15± 0.23

Invisible width of Z boson at LEP
e+ + e− → Z0 → νν̄ gives:
Nν = 2.984± 0.008
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Short history of neutrino

Parity violation

Weak interactions violate parity

Physical laws in our world and in mirror
world are different. How this can be
seen?
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Short history of neutrino

Parity violation

Weak interactions violate parity

Wu discovered that electrons
emitted in a direction opposite to
60Co spin

The same is seen differently in
the mirror=Parity violation

This was an important information
to build the Standard Model
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Current status

Neutrino masses

How to weigth neutrino?
From particle’s decays. The energy of decay products does depend on
neutrino mass
l From tritum decays 3H → 3He+ e− + ν̄e:

mνe < 2.2 eV

l From pion decays π+ → µ+νµ:

mνµ < 170 keV

l From tau lepton decays τ− → 2π−π+ντ and τ− → 3π−2π+ντ :

mντ < 18.2 MeV

From Cosmology:
l Big Bang models predicts fixed ratio nν : nγ in the Universe
l If the total energy of all three types of neutrinos exceeded an average of 50

eV per neutrino, there would be so much mass in the universe that it would
collapse!

l Cosmology puts the strongest limit∑
i

mi < 0.23 eV
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Current status

Neutrino Oscillations

It was found experimentally, that
l This is possible:

π+ → µ++νµ

↪→ νµ + n → p+ µ− flavour is conserved

l This is not possible:

π+ → µ++νµ

↪→ νµ + n → p+ e− flavour is not conserved

Leaving out a very exciting history we can now state that the above
picture is not correct:
l Neutrino changes its flavour while it propagates! This change is to a good

accuracy periodic
l This is known as neutrino oscillations
l The length of oscillations is proportional to Eν/∆m2

ij where ∆m2
ij = m2

i −m2
j

l Flavour neutrinos νe, νµ, ντ do not have definite masses. Instead they are
superpositions of states with definite masses. Quantum Mechanics in action!
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Current status

Mixing of neutrinos

νe = Ue1 ν1 + Ue2 ν2
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Current status

Mixing of neutrinos

The amplitudes Ue1,Ue2 are part of neutrino mixing 3× 3 matrix
parametrized by 3 mixing angles θ12, θ23, θ13 and one phase δ
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Current status

Mixing of neutrinos

Neutrino oscillations provides a
sensitive tool to measure ∆m2

ij
and mixing angles θij

Neutrino oscillations are observed
experimentaly with atmospheric,
solar, reactor, accelerator
neutrinos
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Current status

Back to neutrino masses and mixing angles

Re-thinking old limits + oscillation results
l From tritum decays

3H → 3He+ e− + ν̄e:√∑
i

|Uei|2m2
i < 2.2 eV

l From pion decays
π+ → µ+νµ:√∑

i

|Uµi|2m2
i < 170 keV

l From tau lepton decays
τ− → 2π−π+ντ and
τ− → 3π−2π+ντ :√∑

i

|Uτ i|2m2
i < 18.2 MeV

l From Cosmology:∑
i

mi < 0.23 eV

l From oscillations: neutrinos do have a
definite non-zero mass (otherwise no
oscillations possible)

l |∆m2
31| = 2.4 · 10−3 eV2

↪→ m3 ≥
√

∆m2
31 = 0.05 eV

l ∆m2
21 = 7.5 · 10−5 eV2

↪→m2 ≥
√

∆m2
21 = 0.009 eV NH

↪→m2 ≥
√

∆m2
21 +

√
∆m2

31 = 0.06 eV IH
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Frontiers in neutrino physics

Mass hierarchy

What is heavier m1 or m3?

Many experimental approaches
(all using oscillations):
accelerator neutrinos (T2K,
NOVA, DUNE), reactor (JUNO),
atmospheric (PINGU, BAIKAL
GVD), cosmology 1 2 3 4 5 6 7 8 9 10
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Frontiers in neutrino physics

Dirac vs Majorana

Main question: If neutrino and
anti-neutrino are the same
particle or two different particles?

A detection of 0ν2β events will
definitely say that neutrino is
Majorana particle

So far no 0ν2β event is observed

Important: Neutrinoless double
beta decay experiments are
sensitive to the absolute scale to
neutrino masses unlike
experiments with neutrino
oscillations

A very active field of research
now 19/35



Frontiers in neutrino physics

Dirac vs Majorana

Next generation of experiments
will be sensitive to mββ ≃ 0.01 eV
and will be able to discover
Majorana nature of neutrino if
inverted hierarchy is right

Next-to-next generation of
experiments must be sensitive to
mββ ≃ 0.001 eV in order to be
able to discover Majorana nature
of neutrino if normal hierarchy is
right

Important: One should not
infinitely increase sensitivity to
mββ . If Majorana nature of
neutrino is not discovered with
next and next-to-next generations
of experiments = neutrino is a
Dirac particle.
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Frontiers in neutrino physics

What produces astrophysical neutrinos?

Neutrino fluxes

21/35



Frontiers in neutrino physics

What produces astrophysical neutrinos?

Visible sky in different particles
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Frontiers in neutrino physics

What produces astrophysical neutrinos?

Revolution in Neutrino Astronomy
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Frontiers in neutrino physics

What produces astrophysical neutrinos?

Long time astrophysical neutrino were a theory speculation. Nobody has
seen them including IceCube.

It was till a long waited revolution! came! IceCube observed neutrino of
high energies of extra-terestial origin

Bert, Ernie and Big Bird with energies 1.0, 1.1 and 2.2 PeV.
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Frontiers in neutrino physics

What produces astrophysical neutrinos?

Current state: http://arxiv.org/pdf/1410.1749v2
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Frontiers in neutrino physics

What produces astrophysical neutrinos?

Where neutrino come?

Not clear
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Frontiers in neutrino physics

What produces astrophysical neutrinos?

Astrophysical neutrinos do exist (IceCube)

Their sources are unknown.

Direction accuracy reconstruction in IceCube is not good because of
light rescattering in ice. We need a detector with good angular resolution

BAIKAL GVD will have a good angular resolution. Baikal is the North
Hemisphere thus will see South Hemisphere and Galactic Center
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Frontiers in neutrino physics

Other exciting studies with neutrinos

Neutrino nucleus cross-sections measurements

Precise measurements of solar neutrino fluxes

Search for a sterile neutrino

Monitoring of reactor fuel composition and power (nuclear non
proliferation)

Neutrino oscillations in matter

Neutrino nucleus coherent scattering

Measurement of CP-violation phase δ

Study of loss of coherence effects in neutrino oscillations

Observation of relic neutrinos (must be NP!)
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JINR Neutrino Program

Everything on one slide

JINR Neutrino Program widely covers major neutrino topics
NOVA: Accelerator neutrino and
antineutrino. Mass Hierarchy
determination. Matter effects

OPERA: Accelerator neutrino.
θ23,∆m2

32, ντ appearance

BAIKAL GVD: Astrophysical and
atmospheric neutrino. Matter
effects. θ23,∆m2

32. Reach
potential.

BOREXINO: Solar, geo-neutrino,
matter effects, θ12,∆m2

21, rare
processes

SOX: Radioactive source. Sterile
neutrino search.

SuperNEMO: Dirac or Majorana
vs 0ν2β

GERDA: Dirac or Majorana vs
0ν2β

Daya Bay: Reactor antineutrino.
θ13,∆m2

ee, sterile neutrino, reactor
flux measurement

JUNO: Reactor antineutrino.
Mass Hierarchy determination.
Precise (better than 1%)
measurement of θ12,∆m2

21, ∆m2
32,

SN neutrinos, reach program.

DANSS: Reactor antineutrino.
Sterile neutrino. Reactor
monitoring.

GEMMA-2: Reactor antineutrino.
µν anomalous neutrino magnetic
moment

νGEN: Coherent Neutrino
Germanium Nucleus Elastic
Scattering
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JINR Neutrino Program

BAIKAL GVD

Brief Summary
1 km3 scale by 2023
Flexible structure (upgrade and
re-arrangemenet)
High accuracy in reconstruction of
direction, good energy
reconstruction and flavour
decomposition
2304 PMTs
Baikal was a pioneer in the field.
Huge experience is accumulated
New life began in 2014. A need
for a 1 km3 detector is clear to
identify the sources.
27 astrophysical neutrinos to be
detected by 2020.
First cluster “Dubna” is installed in
2015

JINR contribution
Assembly and test of deep water
components.
Continuous monitoring of the
detector operation and remote
control.
Online and Offline
Databases, DAQ
Detector calibration and mass
processing of data.
Simulations, reconstruction,
selection.
Data analysis
Additional 5.5M$/year for next 5
years are approved by JINR
Directorate to build the detector.

BAIKAL GVD Collaboration is now quickly expanding with Russian and
Foreign Participants. Welcome to join us!
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JINR Neutrino Program

BAIKAL GVD
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JINR Neutrino Program

BAIKAL GVD

BAIKAL GVD. Current Status
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JINR Neutrino Program

BAIKAL GVD

BAIKAL GVD. Current Status
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JINR Neutrino Program

BAIKAL GVD

BAIKAL GVD. Current Status
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JINR Neutrino Program

New facilities

DLNP laboratory for PMT tests was created in 2014
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JINR Neutrino Program

New facilities

An example: JUNO + NOVA young stars
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JINR Neutrino Program

New facilities

We invite interested students and postdocs to work with us in the field of
neutrino physics:

R&D of detectors, methodology

Theory of neutrino oscillations, neutrino-nucleus scattering

within an exciting and world level physics program (BAIKAL GVD,
DANSS, νGEN, JUNO, NOVA, etc)

within enthusiastic and dedicated young teams

within a modern and comfortable environment
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