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Particle Physics, the Universe & the Equivalence Principle

. Particle Physics

Quantum field theory was originally developed to incorporate quantum
mechanics with Special Relativity.

The theory of Special Relativity is based on the line element

ds2 = ηabdy
adyb ,

which describes global Minkowski spacetime.
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Particle Physics, the Universe & the Equivalence Principle

. Particle Physics

Minkowski spacetime has 10 Killing vectors which give rise to the
Poincaré algebra and, thereby, are generators of the Poincaré group.

The Poincaré group is in turn exploited to define elementary-particle
states. Namely, physical particle states correspond to its unitary and
irreducible representations (characterised by mass and spin).
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Particle Physics, the Universe & the Equivalence Principle

. The Universe

The observable Universe is not globally flat, due to dark energy, dark
and baryonic matter, as well as radiation.
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Particle Physics, the Universe & the Equivalence Principle

. The Equivalence Principle

Yet, the Universe locally looks as Minkowski spacetime, in accord-
ance with the Equivalence Principle. It means if lc is a characteristic
curvature length at a given point x0 in the Universe, then the Uni-
verse in the vicinity of x0 can be approximated by Minkowski space-
time for points x satisfying |x − x0| � lc . Therefore, the actual line
element is

ds2 =
(
ηab −

1

3
Racbd(x0)y cyd + ...

)
dyadyb ,

where y are, thus, Riemann normal coordinates, such those y = 0

corresponds to x0, and, moreover, lc ∼ 1/|RabcdR
abcd |

1
4 .
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Particle Physics, the Universe & the Equivalence Principle

. The Equivalence Principle
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Particle Physics, the Universe & the Equivalence Principle

. Back to Particle Physics: Feynman propagator

The scalar-field Feynman propagator in the Universe may then read

GM(x , x ′) =

− 1

8π2

[
u(x , x ′)

σ(x , x ′)−i0
− v(x , x ′) ln(−σ(x , x ′)+i0)− w(x , x ′)

]
,

where σ(x , x ′) is a geodesic distance between x and x ′, which re-
duces to 1

2ηab(y − y ′)a(y − y ′)b in Minkowski spacetime, and ...
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Particle Physics, the Universe & the Equivalence Principle

. Back to Particle Physics: Feynman propagator

... with

u(x , x ′) = 1 + Cσ
1
2 (x , x ′) + C 2σ(x , x ′) + ... ,

v(x , x ′) = 1
2

(
m2 + (ξ − 1

6)C
)

+ Cσ
1
2 (x , x ′) + ... ,

w(x , x ′) = 3
16

(
m4 + m2C +�C + C 2

)
σ(x , x ′) + ... ,

in symbolic notations, where C stands for the curvature tensor, m is
the scalar-field mass and ξ is the scalar-field non-minimal coupling
to gravity:(

�+ m2 − ξR
)
GM(x , x ′) = −i δ(x − x ′)

(−g(x))
1
2

,

where R is the Ricci scalar.
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Particle Physics, the Universe & the Equivalence Principle

. Back to Particle Physics: Feynman propagator

In global Minkowski spacetime, lc →∞, we thus have

GM

(
x(y), x(y ′)

)
=

m2

4π2
K1

(
m
√
−2(σM(y , y ′)−i0)

)
m
√
−2(σM(y , y ′)−i0)

=

∫
d4k

(2π)4
i e−ikµ(y−y

′)µ

k2 −m2 + i0
,

explaining the meaning of the index M.
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Particle Physics, the Universe & the Equivalence Principle

. Back to Particle Physics: Feynman propagator

But, strictly speaking, lc <∞, i.e. we actually have

GM

(
x(y), x(y ′)

)
=

∫
d4k

(2π)4
i e−ikµ(y−y

′)µ

k2 −m2 + i0
+ O(l−2c ) ,

where lc is the characteristic curvature length at the point x0.
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Particle Physics, the Universe & the Equivalence Principle

. Back to Particle Physics: Feynman propagator
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Particle Physics, the Universe & the Equivalence Principle

. Back to Particle Physics: Elementary particles are localised states

Why does the Minkowski-spacetime approximation work in practice?

In short: Elementary particles correspond to localized states, mean-
ing that they are described by wave packets which are essentially
non-vanishing only in a small space-time region in the observable
Universe. If lp is a characteristic size of a particle wave packet, then
this elementary particle can be related to a unitary and irreducible
representation of the local Poincaré group if lp � lc . But, if lp & lc ,
then the standard-model definition of particles looses its meaning.
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Particle Physics, the Universe & the Equivalence Principle

. Back to Particle Physics: Locally Minkowski vacua

The Minkowski vacuum of elementary particle physics is a no-particle
state defined in local Lorentz frames.
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Particle Physics, the Universe & the Equivalence Principle

. Back to Particle Physics: Locally Minkowski vacua

However, one can think about quantum states described by

G (x , x ′) = GM(x , x ′) + GV (x , x ′) ,

where GV (x , x ′) solves the scalar-field equation:(
�+ m2 − ξR

)
GV (x , x ′) = 0 ,

such those

G
(
x(y), x(y ′)

)
= GM

(
x(y), x(y ′)

)
+ O

(
l−2c

)
.
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Particle Physics, the Universe & the Equivalence Principle

. Back to Particle Physics: Locally Minkowski vacua

Thereby, we cannot distinguish

GM(x , x ′) from GM(x , x ′) + GV (x , x ′)

in particle colliders on Earth.

From the point of view of elementary particles physics, all these
states are no-particle states or quantum vacua.



17/40

QFT in the background of collapsing matter

. Quantum-field model

For the sake of simplicity, we shall study a linear scalar-field model
with conformal coupling to gravity:(

�− 1

6
R
)
φ(x) = 0 ,

where R is the Ricci scalar.
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QFT in the background of collapsing matter

. Oppenheimer-Snyder model

Gravitational collapse is a complicated process.

Yet, there is a comparably simple model by Oppenheimer and Snyder,
which captures main features of this process:

�lack Hole
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QFT in the background of collapsing matter

. Outside stars before the collapse

The space-time geometry of non-rotating stars is described by

ds2O = f (r)dt2 − dr2

f (r)
− r2

(
dθ2 + sin2 θdφ2

)
,

with the lapse function

f (r) = 1− rH
r
,

where rH ≡ 2M is the Schwarzschild radius with the stellar mass M.
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QFT in the background of collapsing matter

. Outside stars before the collapse: Quantum vacua

From symmetries of the Schwarzschild geometry, the most general
form of the stress-energy tensor of the scalar field reads

〈Θ̂µ
ν (x)〉O =

p(r)

r4
diag

[
−1,+1, 0, 0

]
+

s(r)

r4
diag

[
−3,+1,+1,+1

]
,

where we have from the stress-tensor conservation, ∇µ〈Θ̂µ
ν (x)〉 = 0:

p(r) = +2k(r)− rf (r)k ′(r)

2f (r)− rf ′(r)
,

s(r) = −k(r) +
rf (r)k ′(r)

2f (r)− rf ′(r)
,

with the arbitrary function k(r).
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QFT in the background of collapsing matter

. Outside stars before the collapse: Quantum vacua

The Boulware (B) vacuum is a state looking empty at large radii.
This unique global asymptotically-empty state is described by

kB(r) ≈ +
1

1440π2
1 + 6f (r)− 63f 2(r)

16f 2(r)

( rH
r

)2
.

The vacuum energy density in this state is negative outside the star!
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QFT in the background of collapsing matter

. Outside stars before the collapse: Quantum vacua

But any quantum state described by

kV (r) = O

(( rH
r

)2)
at r → ∞

also looks empty at large radii!

These states correspond to the local vacua with G = GM + GV .
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QFT in the background of collapsing matter

. Inside stars just before the collapse

The space-time geometry of cold stars is described by

ds2I = a2(η)
(
dη2 − dχ2 − sin2 χ

(
dθ2 + sin2 θdφ2

))
,

where the scale factor

a(η) = a0

{
1 , η ≤ 0 ,

1
2(1 + cos η) , η ∈ (0, π) ,

where

rS = a(η) sinχ0 – the stellar radius,

rH = a0 sin3 χ0 – the gravitational radius,

with χ0 being the stellar-surface location in the FRW frame.
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QFT in the background of collapsing matter

. Inside stars before the collapse: Quantum vacua

From symmetries of the FRW geometry and the regularity at the
stellar center, the most general form of the stress tensor reads

〈Θ̂µ
ν (x)〉I =

π(χ)

a4(η)
diag

[
−1,+1, 0, 0

]
+
σ(χ)

a4(η)
diag

[
−3,+1,+1,+1

]
,

where we have from the stress-tensor conservation, ∇µ〈Θ̂µ
ν (x)〉 = 0:

π(χ) = κ(χ) csc2 χ ,

σ(χ) = σ(0)−
χ∫

0

d χ̄ csc2 χ̄
dκ(χ̄)

d χ̄
,

where κ(χ) is any function of χ, such that κ(χ)/χ2 → 0 at χ→ 0.
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QFT in the background of collapsing matter

. Inside stars just before the collapse: Quantum vacua

There is a “preferred” quantum state in the scalar-field model con-
sidered, that is known as the conformal (C ) vacuum, described by

κC (χ) = 0 and σC (0) = − 1

1440π2
.

The vacuum energy density in this state is positive inside the star!
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QFT in the background of collapsing matter

. Matching condition

We have two space-time regions – inside and outside of the star, –
but how the inside vacuum is related to the outside one?

outide star

hΘ̂µ

ν
(x)iO
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QFT in the background of collapsing matter

. Matching condition

We have two space-time regions – inside and outside of the star, –
but how the inside vacuum is related to the outside one?

outide star

jouti
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QFT in the background of collapsing matter

. Matching condition

Basic idea: No Quantum Phase Transition across the interface.

The no-QPT condition leads to

〈Θ̂µ
ν (x)〉I

∣∣
r=rS

= 〈Θ̂µ
ν (x)〉O

∣∣
r=rS

.
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QFT in the background of collapsing matter

. Matching condition

Thus, in a frame co-moving with the stellar surface, we have

〈Θ̂A
B(x)〉O

∣∣
r=rS

=
p(rS,0)

r4S
diag

[
−1,+1, 0, 0

]
+

s(rS ,0)

r4S
diag

[
−3,+1,+1,+1

]
,

where rS ,0 is the initial stellar radius.
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QFT in the background of collapsing matter

. Matching condition

But, in the Schwarzschild frame, we have

〈Θ̂µ
ν (x)〉O

∣∣
r=rS

= eµA(x)eBν (x)〈Θ̂A
B(x)〉O

∣∣
r=rS

on the stellar surface, where

eµT (x)∂µ = +
f (rS ,0)

f (r)
∂t − f (rS,0)

√
1− f (r)/f (rS ,0) ∂r ,

eµR(x)∂µ = −
√

1− f (r)/f (rS ,0)

f (r)
∂t + ∂r .
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QFT in the background of collapsing matter

. Matching condition

and, in the limit rS → rH , we obtain

〈Θ̂µ
ν (x)〉O

∣∣
rS→rH

= − LOS

4πr2H
nµnν

∣∣
rS→rH

+
s(rS ,0)

r4H
diag

[
−1,−1,+1,+1

]
,

where nµ ≡ (1/f (r),−1, 0, 0) and

LOS ≡ +
8π

r2H
f (rS ,0)

(
p(rS ,0) + 2s(rS ,0)

)
is the black-hole luminosity in the Oppenheimer-Snyder collapse.
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Black-hole evolution after gravitational collapse

. Black-hole contraction: LOS,B ≈ +(21.26×10−5/r2H)×(5rH/rS,0)2

negative-energy in�ux

positive-energy out�ux

\Black-hole atmosphere"

R � �
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Black-hole evolution after gravitational collapse

. Black-hole expansion I: LOS,C ≈ −(11.32×10−5/r2H)×(5rH/rS,0)2

positive-energy in
ux

positive-energy in
ux

particle-creation interpretation

R � �
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Black-hole evolution after gravitational collapse

. Black-hole expansion II: LOS,C ≈ −(11.32×10−5/r2H)×(5rH/rS,0)2

positive-energy in
ux

negative-energy out
ux

R � �

no particle-creation interpretation
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Concluding remarks

. (1/5) The Hawking effect from Bekenstein-entropy argument

The main feature of the Hawking effect is a thermal spectral profile
of the positive-energy outflux.

Yet, Bekensteins black-hole entropy implies that the Hawking tem-
perature can be attributed to black holes, although black-hole evap-
oration does not follow from the thermodynamic argument by itself.

The no-QPT condition with Bekenstein’s entropy leads to the Hawk-
ing effect.
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Concluding remarks

. (2/5) Evasion of the quantum no-hair theorem

The luminosity in the Unruh-vacuum state, LU ≈ +29.75×10−5/r2H ,
turns out to be entirely determined by the black-hole mass only. For
this reason, it is tempting to generalize the no-hair theorem to the
statement “a black hole has neither classical nor quantum hair”.

We have found that the “generalised no-hair theorem” can be evaded,
by directly showing that the Unruh state is not a unique quantum
vacuum describing evaporating black holes.
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Concluding remarks

. (3/5) The Hawking and anti-Hawking effects

We have found that some black holes may be expanding in nature
due to the absorption of positive vacuum energy, while evaporating
black holes absorb negative vacuum energy.
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Concluding remarks

. (4/5) A lab probe of the Hawking and anti-Hawking effects: Sketch

negative-energy influxpositive-energy influx

conducting plates
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Concluding remarks

. (5/5) Information-loss problem in black-hole physics

If a black hole completely evaporates via the Hawking process, then
the information about, e.g., matter composition of the star collapsed
to that black hole is lost as the Hawking outflux is featureless.

This kind of process is not compatible with unitarity.

Many proposals to resolve this problem have been suggested in the
literature, including the idea that semi-classical physics may be not
enough to preserve the unitarity.
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