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p̂ (t,x)
Another device which we put at the same place measures 
canonical momentum                 averaging it with some 
other family of window functions with the same scaling 
property above. Suppose that the resolution is the same. 
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i
= i~ � (x� y)

h
�̂` (x) , p̂` (y)

i
= i~ · `�d · D
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this convolution of shapes does not depend on scale     but 
only on the way of averaging  

`

D (r) =

Z
ddr0 w� (r� r0)wp (r0)

dimensionless

where
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2
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the shorter is the scale at which we 
look, the more quantum is the world 
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For                        the space expands too fast` & H
�1

effective strong frictionfluctuations cannot be static � / a (t)
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huge amplification 



�` / `(1�nS)/2

For short range of scales one 
can parametrise  
the resulting Newtonian 
potential as a power law

nS < 1

spectral index,  
prediction slightly red



Galaxies and  
Large Scale Structure  

do gravitate! 

But all of them appeared out of 
quantum fluctuations!!!

quantum fluctuations should 
gravitate!!!
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It is clear that this zero-
point energy has no physical 

reality…
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Gμν − Tμν −
1
4

gμν (G − T) = 0

Decoupling vacuum energy  
from spacetime curvature

Tμν → Tμν + Λgμν

invariant under vacuum shifts of  
energy-momentum



What is the action for   
the traceless Einstein field equations ?

Gμν − Tμν −
1
4

gμν (G − T ) = 0


