We can display this graphically:

15

things simplify in conformal time: $dt = a \cdot dJ$ =) $S = M_{\rho}^{2} \int dJ d^{3}x \cdot 2a^{2} \epsilon_{H} \cdot \left[(J')^{2} - (\partial_{c} J)^{2} \right]$ 172 canonically normalite 3 and go to Fourier modes of field : $v = M_{p} \cdot z \cdot J$ $U = \int \frac{d^3k}{(2\pi)^3} \cdot V_k e^{i\vec{k}\vec{r}}$ $S = \int \frac{d^3k}{(2\pi)^3} S_k$

e.o.m. from
$$SS/SV_{k}$$
:
 $V_{k}^{"} - (k^{2} - \frac{2}{2})V_{k} = 0$
Mukhanov - Sasaki eq. '
for quasi-dS:
 $\frac{2''}{2} = \frac{2}{T^{2}}(1+O(\epsilon, 2))$
mode solutions:
 $V_{k} = \alpha \cdot \frac{e^{-ikT}}{\sqrt{2k}}(1-\frac{i}{kT})+\beta \cdot \frac{e^{ikT}}{\sqrt{2k}}(1+\frac{i}{kT})$
for $T = -\frac{1}{\sqrt{2k}} \rightarrow \infty$ (ealytimes =
swall distances) curvature negligible
& modes should be like
Minkowski Vacuum modes:

 $\lim_{k \to \infty} S_{k} = \frac{e^{-ikT}}{\sqrt{2k}} \quad Bunch-Davies$ $T \to -\infty$ 18 =) 2=1, B=0 quantitation was straight forward: $\int \nabla_k - \hat{\nabla}_k = \hat{a}_k \nabla_k + \hat{a}_k^+ \nabla_k^+$ compute 2-paint function: $\langle \hat{s}_k \hat{s}_{k'} \rangle_{\overline{f}} \langle o | \hat{s}_k \hat{s}_{k'} | o \rangle$ $\begin{cases} \langle o|(a_{\vec{k}}v_{k}^{*}+a_{-\vec{k}}^{*}v_{k}^{*})(a_{\vec{k}}v_{k}^{*}+a_{-\vec{k}}^{*}v_{k}^{*})|o\rangle \\ = v_{k}v_{k}^{*}\langle o|[a_{\vec{k}},a_{-\vec{k}}^{*}]|o\rangle \\ = |v_{k}|^{2} \cdot \delta^{(s)}(\vec{k}+\vec{k}') \end{cases}$

$$= \frac{1}{|V_{k}|^{2}} = \frac{1}{2k^{3}} \cdot \frac{1}{T^{2}} = \frac{a^{2}H^{2}}{2k^{3}}$$

$$= \frac{1}{2k^{3}} \cdot \frac{1}{T^{2}} = \frac{a^{2}H^{2}}{2k^{3}}$$

$$= \frac{1}{2k^{3}} \cdot \frac{1}{T^{2}} = \frac{1}{2k^{3}} \cdot \frac{1}{T^{2}} \cdot \frac{1}{2k^{3}} \cdot \frac{1}{2k^{$$

in slow-voll:
$$\dot{\phi} = -\frac{V'}{3H}$$

$$\Rightarrow \Delta_{3}^{2} = \frac{1}{12\pi^{2}} \cdot \frac{V^{2}}{V^{2}} = \frac{1}{24\pi^{2}} \cdot \frac{V}{\epsilon}$$

$$spechal fift n_{5} \text{ of } \Delta_{3}^{2} :$$

$$n_{5} = 1 + \frac{d \ln \Delta_{3}^{2}}{d \ln k}$$

$$USe: \cdot k = a k_{ph} |_{lov. cross.} = e^{-N_{e}} H$$

$$N_{e} = folds before and of infl.$$

$$= \int d \ln k = -dN_{e}$$

$$\cdot \frac{d\phi}{dN_{e}} = \frac{\dot{\phi}}{H} = -\frac{V'}{V}$$

$$\Rightarrow h_{5} = 1 - 6\epsilon + 2\gamma$$

2nd significance of
$$\Gamma$$
:
Compute $N_e = \int H dt = \int \frac{d\varphi}{\sqrt{ze}}$
 $= \int N_e \simeq \frac{\Delta \phi}{M_p} \cdot \frac{1}{\sqrt{ze}}$
 $(=) \quad \Upsilon = 16 \in \simeq \frac{8}{N_e^2} \cdot \left(\frac{\Delta \phi}{M_p}\right)^2$
 $= \int \Upsilon \simeq 0.003 \cdot \left(\frac{50}{N_e}\right)^2 \cdot \left(\frac{\Delta \phi}{M_p}\right)^2$
 $\frac{'Lyth \ bound'}{V \ T \sim 0.01}$ corresponds to
boundary between large-field
and small-field inflation.

[Guth, Linde, Starobinsky, Albrecht, Steinhardt '80s]

[picture from lecture notes: Linde '07]

slow-roll inflation ...

[Guth, Linde, Starobinsky, Albrecht, Steinhardt '80s]

slow-roll inflation ...

[Guth, Linde, Starobinsky, Albrecht, Steinhardt '80s]

slow-roll inflation ...

[Guth, Linde, Starob hsky, Albrecht, Steinhardt '80s]

UV completion - large fields
in string theory
Sbrings: 1-dim closed or open
vibrating objects with
length
$$\sqrt{a^2}$$
 & tension $\frac{1}{a^2}$
action : fluctuations of 2-dim
Looddvolume
 $S = \frac{1}{a^2}, \int d^2 \sqrt{-g}$
space-time d.of. : always $g_{\mu\nu}$, $B_{\mu\nu}$, Φ
 \oplus SUSY =) D=10

dualities: e.g. T-duality
theory on
$$\mathbb{P}^{5'} \stackrel{<}{=} \frac{1}{2^{n'+}} \int_{0}^{10} \mathbb{P}^{-branes}$$
 from end-of-open strings
Divichlet boundary conditions
 $(p+1)$ -dim. coold volume
 $(p+1)$ -dim. coold volume
 $(p+1)$ -dim. coold volume
 $S = \frac{1}{2^{n'+}} \int_{0}^{10} \sqrt{-g} e^{-2\phi} \left(R + 4(\partial_{m}\phi)^{2} + |H_{3}|^{2}\right)$
 $+ S_{matter}$

$$S_{matter} = \frac{1}{\alpha''^{4}} \int d'^{b} \sqrt{-g} \cdot \left[\sum_{P} |\widetilde{F}_{P}|^{2} + CS \right]$$

$$localized objects \left(+ \sum_{P} \left(T_{P}^{B} \frac{\delta^{9-P}(x_{I})}{\sqrt{-g_{I}}} \right) + \sum_{P} \left(T_{P}^{B} \frac{\delta^{9-P}(x_{I})}{\sqrt{-g_{I}}} \right) - T_{P}^{O} \frac{\delta^{9-P}(x_{I})}{\sqrt{-g_{I}}} \right)$$

$$like : D_{P} - branes - T_{P}^{O} \frac{\delta^{9-P}(x_{I})}{\sqrt{-g_{I}}} + \sum_{P} \left(\frac{\delta^{9-P}(x_{I})}{\sqrt{-g_{I}}} \right) + highse - deivative}$$

$$\widetilde{F}_{p} = F_{p} + \frac{B_{2} \wedge F_{p-2}}{Couplings}$$

$$F_{p} = dC_{p-1}, \quad H_{3} = dB_{2}$$

.

10D -> 4D: compactification²⁶

$$M_{10} \rightarrow M_4 \times X_6$$

 $vol(X_6) \sim L^6$ small, but
bigger than unity in units
 $d_{VX'}$ (strivy langth) for control.

NX6 has deformation modes: massless 4D scalars - "moduli"

Sq^a : complex structure moduli¹²⁸

$$\chi = 1, ..., h^{2,1} | volumes of h^{2,1}$$

expand Jum 7 Jum + to Sg^a + U, Sg^a
and plug into :
 $S = \int d^{10}x \sqrt{g}R$
 $R - 7R + G_{ab} \partial t^{a} \partial \overline{t^{b}} + G_{ab} \partial u^{a} \partial \overline{tk^{b}}$
 t^{a}, u^{a} massless 4D scalar fields:
moduli
String theory compactified on a
 CY_{3} gives as EFT in 4D are
 $W = 1$ supergravity:
 t^{a}, u^{a} part of chiral superfields