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Hydrogen atom in higher dimensions

To understand hydrogen is to understand all of physics!”
...Much of what we know about the universe has come from looking at

hydrogen and it cannot be denied that the universe itself is made
almost entirely of hydrogen.” 1

1”The Yin and Yang of Hydrogen”, D. Kleppner, Phys. Today, April 1999
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Consequences of compactification for atomic physics
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d-dimensional hydrogen atom with 1/r potential

S. P. Alliluev, Sov. Phys.JETP 6, 156 (1958)

Extended Fock’s method of stereographic projection to the case of d
dimensions (d > 2).

• Michael Martin Nieto (1979). “Hydrogen atom and relativistic
pi-mesic atom in N-space dimensions”. In: Am. J. Phys.

• Frank Burgbacher, Claus Lämmerzahl, and Alfredo Macias (1999).
“Is there a stable hydrogen atom in higher dimensions?”. In:
Journal of Mathematical Physics 40.2

• Shi-Hai Dong (2011). Wave Equations in Higher Dimensions.
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d-dim hydrogen atom with potential from Gauss’ law

A more physically relevant potential is the solution of Maxwell’s
equations for a point charge in the d-dimensional space:

Vd(|x |) ∼ |x |2−d , (d 6= 2)

• The corresponding Schrödinger equation reads(
− ~2

2m
∆d −

e2d
|x |d−2

)
ψ = Eψ,

where ed is the d-dimensional charge.
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The model, questions raised, methods used

Underlying spaces

• extra dimensions of an infinite extent: Rd (especially d = 4)

• compactified extra dimensions: R3 ×M (M = Tm, m = 1)

Definition of operators

• Schrödinger operator of the hydrogen atom on the corresponding
space (to be defined soon)

Questions raised, (main) methods used

• Stability/instability of the system, existence of bound states?
(Functional analysis: Hardy’s inequality, KLMN thm, spectral theory)

• Energy spectrum due to extra dimensions?
(diagonalization of the Hamiltonian)
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Hamiltonians defined as quadratic forms

Definition
Let h(·, ·) be a mapping from Dom (h)×Dom (h) to C, with
Dom (h) ⊂ H such that

h(ψ, aφ+ bη) = ah(ψ, φ) + bh(ψ, η)

h(aψ + bφ, η) = āh(ψ, η) + b̄h(φ, η)

for all ψ, φ, η ∈ Dom (h) and all a, b ∈ C. Then h is called the
sesquilinear form and Dom (h) the domain of h.

Definition
The mapping h[·] from H to C defined by h[ψ] = h(ψ,ψ) is called the
quadratic form associated with the sesquilinear form h.
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Symmetry and relative boundedness of forms

Definition
A sesquilinear form h is said to be symmetric if h(ψ, φ) = h(φ, ψ) for
all ψ, φ ∈ Dom (h).
A symmetric form h is said to be bounded from below if there exists a
real constant c such that h[ψ] ≥ c‖ψ‖2 for all ψ ∈ Dom (h). If c ≥ 0,
the symmetric form is said to be non-negative.

Definition
Let h0 be symmetric and bounded from below in H. A symmetric form
v (which need not be bounded from below) is said to be relatively
bounded with respect to h0 if

• Dom (v) ⊃ Dom (h0),

• ∀ψ ∈ Dom (h0), |v [ψ]| ≤ a|h0[ψ]|+ b‖ψ‖2,
where a, b are non-negative constants.
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Closedness of a sesquilinear form

Definition
Let h be a symmetric sesquilinear form bounded from below. It is said
to be closed if for any sequence {ψn}n∈N ⊆ Dom (h) with
ψn → ψ ∈ Dom (h) and h[ψn − ψm]→ 0 as n,m→∞, we have
h[ψn − ψ] = 0 as n→∞. A symmetric sesquilinear form bounded
from below is said to be closable if it can be extended to a closed form.
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KLMN (Kato-Lions-Lax-Milgram-Nelson) theorem

Theorem (KLMN)

Let h0 : Dom (h0)×Dom (h0)→ C be a densely defined, symmetric,
non-negative and closed sesquilinear form in H. Let v be a symmetric
sesquilinear form satisfying

1. Dom (h0) ⊂ Dom (v),

2. ∀ψ ∈ Dom (h0), |v [ψ]| ≤ a h0[ψ] + b ‖ψ‖2,

where a, b are non-negative and a < 1. Then there exists a unique
self-adjoint and bounded from below operator H, associated with the
closed symmetric sesquilinear form

h := h0 + v , Dom (h) := Dom (h0).
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Kato-Rellich theorem

Theorem (Kato-Rellich theorem)

• Let H0 be self-adjoint and suppose V is a symmetric operator with
Dom (V ) ⊃ Dom (H0) so that for some a < 1 and b,

‖Vφ‖ ≤ a‖H0φ‖+ b‖φ‖

for all φ ∈ Dom (H0).

• Then H0 + V defined on Dom (H0) ∩Dom (V ) ≡ Dom (H0) is
self-adjoint. If H0 is bounded below, so is H = H0 + V .

• The Kato-Rellich theorem is not always applicable: it requires the
potential to belong to L2 + L∞. This restricts the possible potentials
−|x |−α to singularities of the order 0 < α < 3/2.

• For stronger singularities, α > 3/2, up to the border case α = 2 of
”meaningful” quantum mechanical potentials: KLMN theorem
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Self-adjoint vs. symmetric operators

Definition
Let H be a densely defined operator on a Hilbert space. H is called
symmetric, or Hermitian, if and only if

〈Hφ, ψ〉 = 〈φ,Hψ〉 , ∀φ, ψ ∈ Dom (H).

A symmetric operator H is called self-adjoint if and only if

Dom (H) = Dom (H∗).

References:

1. Schrödinger operators and their spectra, David Krejčǐŕık

2. Methods of Modern Mathematical Physics, Reed M., Simon B.

3. Hilbert Space Operators in Quantum Physics, Blank J., Exner P., Havĺıček M.

12 of 49



Hardy’s inequality

Lemma (The classical Hardy inequality (for d ≥ 3))

∀ψ ∈W 1,2(Rd),

∫
Rd

|∇ψ(x)|2dx ≥ (d − 2)2

4

∫
Rd

|ψ(x)|2

|x |2
dx .

Summary : Hardy’s inequality + KLMN theorem → stability
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Extra dimension of an infinite extent
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Definition of the system under consideration

• Schrdinger’s equation(
− ~2

2m
∆4 + V4(x)

)
ψ(x) = Eψ(x),

with V4(x) = −e24/|x |2, x ∈ R4

• We can rewrite it by using a dimensionless parameter Z := 2me24/~2,
where e24 is the four dimensional charge:(

−∆4 −
Z

x2

)
ψ(x) = E ′ψ(x).
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Stability Z < 1: Application of Hardy’s Inequality

• Free Hamiltonian H0 := −∆, Dom (H0) := W 2,2(R4),
is associated with the quadratic form

h0[ψ] := ‖∇ψ‖2, Dom (h0) := W 1,2(R4).

• V (x) = |x |−2 with x ∈ R4 is associated with

v [ψ] := 〈ψ,Vψ〉, Dom (v) := {ψ ∈ L2(R4) : |〈ψ,Vψ〉| <∞}.

• The classical Hardy inequality (for d ≥ 3)

∀ψ ∈W 1,2(Rd),

∫
Rd

|∇ψ(x)|2dx ≥ (d − 2)2

4

∫
Rd

|ψ(x)|2

|x |2
dx .

• In d = 4 we get

∀ψ ∈W 1,2(R4),

∫
R4

|∇ψ(x)|2dx ≥
∫
R4

|ψ(x)|2

|x |2
dx .
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Stability Z < 1: Application of Hardy’s Inequality

• Hardy inequality (for d = 4, notation for quadratic forms):

∀ψ ∈ Dom (h0), |v [ψ]| ≤ h0[ψ].

• By KLMN theorem, if Z < 1, the quadratic form

h[ψ] := h0[ψ]− Zv [ψ], Dom (h) := Dom (h0) = W 1,2(R4),

is symmetric, closed, and bounded from below, thus associated with
a unique self-adjoint operator H that represents our Hamiltonian.
→ H is stable, with non-negative spectrum [0,∞)
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Instability Z > 1: Application of Hardy’s Inequality

• Problem in the definition of our Hamiltonian:
→ ∞ number of s-a operators that act on functions from
C∞0 (R4 \ {0}) as Ḣ := −∆− ZV (x).

• There exists an optimizing sequence of functions {ψn} ⊂W 1,2(R4)
for the Hardy inequality, for instance

ψn(x) := n−1/2|x |(−1+1/n)sgn(1−|x |).

• We analyse inf〈ψ,Hψ〉 by inserting ϕn:

〈ϕn,Hϕn〉
‖ϕn‖2

=
‖∇ϕn‖2 − 〈ϕn,Vϕn〉 − (Z − 1)〈ϕn,Vϕn〉

‖ϕn‖2
→ −∞,

where we used that ϕn optimize the Hardy inequality.
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Infinite extra dimension - Schrdinger’s equation

In d dimensions, introducing the function u(ρ) := ρ(d−1)/2R(ρ), we
obtain the operator

− d2

dρ2
+

[(
(d − 1)(d − 3)

4
+ l(l + d − 2)

)
1

ρ2
−

2me2d
~2

1

ρd−2

]
.

• For d = 4, the potential can be merged with the centrifugal term
arising from radial reduction of the central potential.

• Because of the absence of a characteristic length, a procedure leading
to dimensionless quantities, which works in the treatment of the
radial equation for d 6= 4, cannot be used here!
ρ′ = α1/(4−d)ρ, with α = me2d/~2
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Instability for Z > 1: a more explicit argument

• Performing the transformation R(ρ) = ρ−3/2R̃(ρ), we get the radial
operator acting in L2((0,∞), dρ):

Ḣrad := − d2

dρ2
− γ

ρ2
,

where γ = Z − 3/4− l(l + 2).

”Boundary values for an eigenvalue problem with a singular
potential”

Allan M Krall, J. Differ. Equations (1982).

• One of the results of is that spectrum of any Hα contains continuous
branch [0,+∞) and negative eigenvalues having accumulation point
at 0 and and −∞.
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Infinite extra dimensions - summary

Infinite extra dimension,2 space R4

• weak coupling (0 ≤ Z ≤ 1): spectrum of H is the same as that of H0

(free particle), i.e. (0,+∞)
→ Hamiltonian is stable without any bound states

• strong coupling (Z > 1): spectrum extends to −∞
→ unstable hydrogen atom

Infinite extra dimensions, space Rd , d ≥ 5
Hydrogen atom is unstable: formally derived in earlier works:3

2Martin Bureš and Petr Siegl (2015). “Hydrogen atom in space with a
compactified extra dimension and potential defined by Gauss’ law”. In: Annals of
Physics 354, pp. 316–327. arXiv: 1409.8530v1.

3L Gurevich and V Mostepanenko (1971). “On the existence of atoms in
n-dimensional space”. In: Physics Letters A 35.3, pp. 201–202; Keith Andrew and
James Supplee (1990). “A hydrogenic atom in d-dimensions”. In: American
Journal of Physics 58, p. 1177.
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Compactified extra dimension (R3 × S1)

• But, how about if one of the dimensions is compact?
circular compactification: we idetify points x4 → x4 + 2πR

• How does that change the story?
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Compactified extra dimension - method of images

• The basic idea - unroll the curled-up dimension to get an infinite
space that repeats itself with a period of 2πR
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Compactified extra dimension - method of images

To calculate the force between two particles, the method of images
makes it easier
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Definition of the system under consideration

• Main research goal: consequences of one additional compactified
dimension for the stability of the non-relativistic hydrogen atom,
defined through the potential

V (x) := −
∞∑

n=−∞

e24d
x21 + x22 + x23 + (x4 − cn)2

= −
e24d
2Rr

sinh r/R

cosh r/R − cos x4/R
,

where r2 := x21 + x22 + x23 , cn := 2πRn, e4d is the charge.
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Behaviour of the potential

• For r � R and x4 � R, the lowest-order term in the expansion of
the potential is (ρ2 := r2 + x24 ):

V (r , x4) = −e24d/(r2 + x24 ) = −e24d/ρ2.

→ the behaviour of the potential around the origin is the same as in
the uncompactified case

• On the other hand, if r � R, we get

V (r , x4) = −e24d/2rR = −e23d/r ,

→ the usual three-dimensional behaviour is restored

• relation between the 3-d and the 4-d charge:

e24d = 2Re23d
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Stability Z < 1: Application of Hardy’s Inequality

• the Hardy inequality establishes the relative form-boundedness of
ZV (x):

|v [ψ]| ≤ a|h0[ψ]|+ b‖ψ‖2.

• KLMN theorem

For any potential with the singularity 1/|x |2,

V (x) = − 1

|x |2
+ W (x), with W ∈ L∞(R3 × S1),

the stability result remains the same as in R4,
i.e. the critical value Z = 1.
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Critical Compactification Radius

• from the relation between charges e24d = 2Re23d we have:

Z :=
2me24d
~2

=
4Rme23d

~2
=

4R

a0

• we infer the existence of a critical compactifion radius Rc:

Rc := ZC
a0
4

=
a0
4

=
~2

4me23d
≈ 1.32× 10−11m

• the atom is stable for R < Rc and not stable if R > Rc

• current experimental bounds on the size of extra dimensions:4

R−1 > 1.3TeV at 95% C.L. R ∼ 10−18m

4E.g. Datta A., Patra A. and Raychaudhuri S.: Higgs Boson Decay Constraints
on a Model with a Universal Extra Dimension, 2013, arXiv:1311.0926
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Summary of results for R3 × S1 (compactified case)

Compatifiaction radius R < a0/4

• System is stable!

• Essential spectrum remains [0,∞)

• As a consequence of compactification, infinite number of negative
energy eigenstates appear

• Bound states extend at least to the ground state of the hydrogen
atom

Compatifiaction radius R > a0/4

System is not stable (spectrum (−∞,∞))

Martin Bureš and Petr Siegl (2015). “Hydrogen atom in space with a
compactified extra dimension and potential defined by Gauss’ law”.

In: Annals of Physics 354, pp. 316–327. arXiv: 1409.8530v1
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Relativistic case

• The critical dimension for the hydrogen atom is three, instead of four
(unlike the non-relativistic case).

• Thus, already in three spatial dimensions there exists a critical value
of the coupling constant, above which the atom becomes unstable.

• Proof, cf. Lieb and Seiringer 2010, Lemma 10.3, also Lieb and
Seiringer 2010, Chap. 8. The ground state energy is

E0 = inf
ψ∈H+

0 ,‖ψ‖2=1
[(ψ,D0ψ)− Zα(ψ, |x |−1ψ)]

Lemma (Stability of Hydrogen)

There is a critical (Zα)c , with 2/π ≤ (Zα)c ≤ 4/π, such that E0

satisfies E0 >∞ for Zα < (Zα)c and E0 = −∞ for Zα > (Zα)c .

(Since |p| and 1/|x | both scale like an inverse length, there is a
critical coupling constant above which even stability of the first kind
fails. Lieb and Seiringer 2010, Remark 8.5)
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Relativistic case

• The relativistic Hardy inequality reads [Lieb and Seiringer 2010,
Remark 8.5] function in H1/2(Rd). Then there is the strict inequality

(ψ(x), |p|ψ(x)) > 2

(
Γ
(
d+1
4

)
Γ
(
d−1
4

))2 ∫
Rd

|ψ(x)|2

|x |
dx

• Moreover, the constant is sharp, i.e., for any bigger constant the
inequality fails for some function in H1/2(Rd). For d = 3 the
constant in the relativistic Hardy inequality is
2(Γ(1)/Γ(1/2))2 = 2/π.

• The spectral properties of the operator (p2 + m2)1/2 − Ze2/r were
examined in [Herbst 1977].

• Lieb, Yau, ”The stability and instability of relativistic matter” [Lieb
and Yau 1988].
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Relativistic case - Klein-Gordon equation

• Analysis of stability for the following operator [Herbst 1977]

H =
√
−∆ + m2 −m + ZV(x)

The square root of the Klein-Gordon equation can be interpreted as a
pseudodifferential operator [Laemmerzahl 1993]. The difficulty of its
treatment is given by its non-locality.

• For simplicity, we set m = 0. The simple inequality√
p2 + m2 −m ≥ |p| −m shows that stability also holds in the case

of non-zero mass whenever it holds with zero mass [Lieb and
Seiringer 2010, Remark 8.5].

• Stability of relativistic matter implies stability of non-relativistic
matter [Lieb and Seiringer 2010, Remark 8.6], hence the conclusions
of [Bureš and Siegl 2015] are a special case of the above results.
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Space Dimension Dynamics and Modified Coulomb
Potential of Quarks - Dubna Potential

• Quarkonium spectroscopy indicates that between valence quarks
inside hadrons, the potential on small scales has D = 3 Coulomb
form and at hadronic scales has D = 1 Coulomb one.

• We may form an effective potential in which at small scales
dominates D = 3 component and at hadronic scale - D = 1, the
Coulomb-plus-linear potential (the ”Cornell potential”):

V (r) = −k

r
+

r

a2
= µ(x − k

x
), µ = 1/a = 0.427GeV , x = µr ,

where k = 4
3αs = 0.52 = x20 , x0 = 0.72 and a = 2.34GeV−1 were

chosen to fit the quarkonium spectra [Eichten et al 1978].
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Space Dimension Dynamics and Modified Coulomb
Potential of Quarks - Dubna Potential

• We consider the dimension D(r) of space of hadronic matter
dynamically changing with r and corresponding Coulomb potential

VD(r) ∼ r2−D(r),

where effective dimension of space D(r) changes from 3 at small r to
1 at hadronic scales ∼ 1fm.

• Cornell potential contains QCD dynamics. We may compare it with
Coulomb potential with dynamical dimension. We define dimension
of space from the equality of V (r) = µ(x − k

x ) and
V (D, r) = −α(D)r2−D :

• In5 we constructed such a potential and effective dimension as a
functions of r .

5Martin Bureš and Nugzar Makhaldiani (2019). “Space Dimension Dynamics
and Modified Coulomb Potential of Quarks - Dubna Potentials”. In: Physics of
Elementary Particles and Atomic Nuclei, Letters 16 (6).
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Space Dimension Dynamics and Modified Coulomb
Potential of Quarks - Dubna Potential
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Figure: αs as a function of x = µr ∈ (0.01, 1.0)
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Space Dimension Dynamics and Modified Coulomb
Potential of Quarks - Dubna Potential
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Figure: αs as a function of x = µr ∈ (0.72, 5)
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Energy shifts due to a compactified extra dimension

We know that:6

• size of extra compactified dimension has to be smaller than R = a0/4

• ground state energy for R = 0 equals the 3-dim hydrogen atom
energy (no perturbation due to extra dimension)

• for R = a0/4 the atom is unstable, so the energy should diverge
(E → −∞)

Question: how does the spectrum change?

• Method used: diagonalization of the Hamiltonian7

6Martin Bureš and Petr Siegl (2015). “Hydrogen atom in space with a
compactified extra dimension and potential defined by Gauss’ law”. In: Annals of
Physics 354, pp. 316–327. arXiv: 1409.8530v1.

7Martin Bureš (2015). “Energy spectrum of the hydrogen atom in a space with
one compactified extra dimension, R3 × S1 ”. In: Annals of Physics 363,
pp. 354–363. arXiv: 1505.08100 [quant-ph].

37 of 49

http://arxiv.org/abs/1409.8530v1
http://arxiv.org/abs/1505.08100


Energy shifts due to a compactified extra dimension

Basis constructed from the hydrogen atom eigenstates

〈~x |nlmq〉 = Rnl(r)Ylm(Ω)
e iqθ√

2π
,

l ∈ N, m ∈ {−l , . . . , l}, n ∈ {l + 1, l + 2, . . . }, q ∈ Z.

Matrix elements of the Hamiltonian:

〈n′ l′m′q′|Ĥ|nlmq〉 = δll′δmm′

{
δnn′δqq′

(
−

1

n2
+

q2

R2

)
−
(
1− δqq′

)
Mn,n′ ;l (1, |q − q′|/R)

}
,

where

Mn,n′ ;l (g, µ) =
g

2

(
4

nn′

)l+2
√

(n − l − 1)!(n′ − l − 1)!

(n + l)!(n′ + l)!

(2l + 1)!

σ2l+2

min(n−l−1,n′−l−1)∑
k=0

(
n + l

n − l − 1− k

)

×
(

n′ + l

n′ − l − 1− k

)(
k + 2l + 1

k

)(
2

nσ

)k ( 2

n′σ

)k (
1−

2

nσ

)n−l−1−k (
1−

2

n′σ

)n′−l−1−k

,

with σ(|q − q′|/R) = 1/n + 1/n′ + |q − q′|/R.
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Energy shifts due to a compactified extra dimension

Basis constructed from exponential functions

〈~x |iq〉 = 2α
3/2
i e−αi r

e iqθ√
2π
, i ∈ {1, 2, . . . , I}, q ∈ {−Q, . . .Q}

Matrix elements of the Hamiltonian:

〈jp|Ĥ|iq〉 =

[
〈jp|iq〉

(
αiαj +

q2

R2

)
−

(2
√
αiαj)

3

(αi + αj + |q − p|/R)2

]
,

where

〈jp|iq〉 = 4(αmαn)3/2
∫ ∞
0

drr2e−(αi+αj )r
1

2π

∫ 2π

0

ei(q−p)θ =

(
2
√
αiαj

αi + αj

)3

δp,q

are the overlap integrals.
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Energy shifts due to a compactified extra dimension

n=1

n=2

n=3

n=1,q=1

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-2.0

-1.5

-1.0

-0.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-2.0

-1.5

-1.0

-0.5

R

E

(a) Energy levels: hydrogen basis
(l = m = 0, size N = 10, Q = 30)
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(b) Energy levels: exponential basis
(l = m = 0, size N = 10, Q = 30)
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Energy shifts due to a compactified extra dimension
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(e) Ground state energy dependence
on basis size (hydrogen atom basis,
N = 7, Q = 1, . . . , 50)
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(g) Ground state energy dependence
on basis size (exponential basis, N =
7, Q = 1, . . . , 50)

Figure: Energy eigenvalues (in units e2/2a) as a function of the
compactification radius R (in units of the Bohr radius a). Hydrogen atom
basis (left-hand side), exponential basis (right-hand side). The computational
step in R was adjusted according to the second derivative of the curves
between ∆R = 0.005 and ∆R = 0.03.
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Lifting of degeneracy

n=2,l=0

n=2,l=1

n=3,l=0

n=3,l=1

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-0.5

-0.4

-0.3

-0.2

-0.1

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-0.5

-0.4

-0.3

-0.2

-0.1

R

E

Figure: The lifting of degeneracy of energy levels (hydrogen atom basis,
N = 7, Q = 30): n = {2, 3}: l = 0 (solid line) l = 1 (dashed line), m = 0.
The almost vertical curve represents the first Kaluza-Klein state n = 1, q = 1.
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Electron probability density in the (r , θ) plane

(a) Hydrogen atom basis (N = 10, Q = 30)

(b) Exponential basis (N = 10, Q = 30)
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Thank you!
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The Friedrichs extension

If we are given a symmetric and bounded from below operator H, then
the sesquilinear form, defined as

h(φ, ψ) := 〈φ,Hψ〉 for all φ, ψ ∈ Dom (h),

with Dom (h) := Dom (H), is also symmetric and bounded from
below. Such form is closable and by the first representation theorem,
the operator associated with its closure is self-adjoint and bounded
from below, with the same lower bound of the spectrum as the original
symmetric operator H.

47 of 49



The first representation theorem

Theorem (The first representation theorem)

Let h : Dom (h)×Dom (h)→ C be a densely defined, symmetric,
bounded from below and closed sesquilinear form in H. Then there
exists a self-adjoint operator H such that

i) Dom (H) ⊂ Dom (h) and h(φ, ψ) = 〈φ,Hψ〉 for every
φ ∈ Dom (h) and ψ ∈ Dom (H);

ii) Dom (H) is a core of h;
iii) if ψ ∈ Dom (h), η ∈ H, and h(φ, ψ) = 〈φ, η〉 holds for every φ

belonging to a core of h, then ψ ∈ Dom (H) and Hψ = η. The
self-adjoint operator H is uniquely determined by the condition i).
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Weyl’s criterion

Theorem
Let H be a self-adjoint operator on H. A point λ belongs to σ(H) if,
and only if, there exists a sequence {ψn}n∈N ⊂ Dom (H) such that
‖ψn‖ = 1 for all n ∈ N and limn→∞ ‖(H − λ)ψn‖ → 0. Moreover, λ
belongs to σess(H) if, and only if, in addition to the above properties
the {ψn} converges weakly to zero in H.
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