

Lecture #3 Dark Matter Models

Dmitry Gorbunov

Institute for Nuclear Research of RAS, Moscow

The Helmholtz International School Cosmology, Strings, and New Physics"

DIAS-TH Program at BLTP, JINR Dubna, Russia

- 2 Thermal Dark Matter
- 3 Non-thermal candidates

NN

Outline

- 2 Thermal Dark Matter
- 3 Non-thermal candidates
- 4 Summary

So far only gravitational evidence for DM

Dark Matter properties from cosmology:

p = 0

(If) particles:

- stable on cosmological time-scale
 - requires new (almost) conserved quantum number
- Produced in the early Universe

some time before RD/MD-transition (T = 0.8 eV)

smoothed out by free streaming

In onrelativistic particles long before RD/MD-transition (T = 0.8 eV) (either Cold or Warm, $v_{RD/MD} \lesssim 10^{-3}$) Otherwise no small-size structures, like dwarf galaxies:

If were in thermal equilibrium:

- (almost) collisionless
- (almost) electrically neutral
- In all matter inhomogeneities (perturbations) are adiabatic:

$$\delta\left(\frac{n_B}{n_{DM}}\right) = \delta\left(\frac{n_B}{n_{\gamma}}\right) = \delta\left(\frac{n_v}{n_{\gamma}}\right) = 0$$

Dmitry Gorbunov (INR)

Lecture #1, 7 August 2019

 $M_X \gtrsim 1 \text{ keV}$

 $p = 0, v_{sound} = 0$

CMB distortion

Dark Matter properties from astrophysics

Free massive scalar field

$$\mathscr{L} = rac{1}{2} g^{\mu
u} \partial_\mu \phi \partial_
u \phi - rac{1}{2} m_\phi^2 \phi^2$$

Homogeneous scalar field in the expanding Universe

 $\ddot{\phi} + 3H\dot{\phi} + m_{\phi}^2\phi = 0$

Two-stage evolution:

$$\begin{array}{ll} m_{\phi} < H(t) & \Longrightarrow & \phi = \phi_i = {\rm const} \\ m_{\phi} > H(t) & \Longrightarrow & \rho = \langle E_k \rangle - \langle E_\rho \rangle = 0 \,, \quad \rho \sim m_{\phi}^2 \phi^2 \propto 1/a^3 \end{array}$$

• dust-like substance in the late Universe, $\Omega \propto m_{\phi}^{1/2} \phi_i^2$ depends on initial conditions

- presureless at spatial scales $l > 1/m_{\phi}$
- isocurvature mode: $\delta \rho_{\phi} \propto \delta H$, δf_i

Dmitry Gorbunov (INR)

fuzzy DM

Further strengthening of the astrophysical bounds

• Fermions (collisionless):

- conservation of the phase space density of DM partciles: gives $\gtrsim 5 \, keV$ when tested with dwarf spheroidal galaxies - free streaming gets read of small scale inhomogeneities Ly- α forest observations constrain velocity dispersion

Very light bosons

– produce preasure, hence non-standard gravitational potentials at distances $\propto 1/m$:

pulsar timing constraints

- selfinteraction prevents the cusp formation:
- Supermassive black holes in galactic centers
- Caustic formation

Galactic dark halos:

flat rotation curves

CDM Problems at small-scales ...?

- NFW profile fits nicely DM in galaxy clusters $\rho \propto r^{-1}(r+r_c)^{-2}$
- Dwarf galaxy density profiles: $\rho_M(r) \propto r^{-(0.5-1.5)}$ cusp most DM-dominated objects

Cores observed (?)

5 Clusters in the Fornax dSph

CDM Problems ...?

- Missing satellites: $\frac{dN_{obj}}{d \ln M} \propto \frac{1}{M}$
- "Too big to fail" problem
- Solved (?) by Warm Dark Matter (sterile neutrino, gravitino) free-streaming

no-scale 100 instead of 1000

AN

Dark Matter: many well-motivated candidates

_		related to EW apple SUSV	
•	VVIIVIPS	related to EW scale, 5051	
۲	sterile neutrinos	active neutrino oscillations	
٩	light scalar field	string theory	
۲	axion	strong CP-problem	
۹	gravitino	local SUSY	
۹	Heavy relics	GUTs	
٩	(Topological) defects	GUTs	
۲	Massive Astrophysical Compact Heavy Objects		
٩	Primordial black hole (remnants)	Phase transitions exotic inflation, reheating	
Multicomponent Dark Matter ?			
		γ, v, H, He	

- 2 Thermal Dark Matter
- 3 Non-thermal candidates
- 4 Summary

NN

Decoupling of relativistic Dark Matter

Assumptions

- DM particles are in equibrium in plasma
- 2 DM decouple from plasma at temperature $T_d \gtrsim M_X$, so they are relativistic

 $n_X(T_d) = g_X \cdot \begin{pmatrix} 1 \\ \frac{3}{4} \end{pmatrix} \cdot \frac{\zeta(3)}{\pi^2} T_d^3$

Later on

 $n_X a^3 = \text{const}, \quad sa^3 = \text{const} \implies \frac{n_X}{s} = \text{const} = \# \frac{g_X}{g_*(T_d)}$

DM particle mass M_X fixes Ω_X :

$$\Omega_X = \frac{M_X \cdot n_{X,0}}{\rho_c} = \frac{M_X \cdot s_0}{\rho_c} \frac{n}{s} \approx 0.2 \times \frac{M_X}{100 \text{ eV}} \left(\frac{g_X}{2}\right) \cdot \left(\frac{100}{g_*(T_d)}\right)$$

NO heavy stable feebly coupled to SM particles !
 NO realistic DM models:

Pauli blocking prevents fermionic DM

too energetic for the proper structure formation

Dmitry Gorbunov (INR)

 $\frac{p_X}{M_X} \propto \frac{a_d}{a} \sim \frac{3T}{M_X} \left(\frac{g_*(T)}{a_*(T_d)}\right)^{1/3}$

Lecture #1, 7 August 2019

(e.g. neutrino)

useful

Decoupling of relativistic Dark Matter

Can we save the relativistic Dark Matter ??

one can try, say, nonstandard cosmological evolution

with entropy production

1	hot stage (radiation domination) $ ho \propto 1/a^4$		
2) add new nonrelativistic particles decoupled from plasma $ ho \propto 1/a^3$		
3	later they start to dominate		
	intermediate stage of matter domination	terminates before BBN !!	
4	both relativistic DM density and entropy density decrease		
5	new nonrelativistic particles decay reheating the Universe $T > 3 \text{M}$		
	entropy production		

N

Decoupling of nonrelativistic Dark Matter

Assumptions:

- no $X \bar{X}$ asymmetry either $X = \bar{X}$ or $n_x = n_{\bar{X}}$
- **2** @ $T \lesssim M_X$ in thermal equilibrium with plasma

$$n_{\rm X}=n_{\rm \bar{X}}=g_{\rm X}\left(\frac{M_{\rm X}T}{2\pi}\right)^{3/2}{\rm e}^{-M_{\rm X}/T}$$

$$X\bar{X} \longrightarrow$$
 light particles

freeze-out temperature T_f

$$H\equiv T^2/M_{_{
m Pl}}^*$$

(e.g. neutrons)

$$n_{\rm X} \langle \sigma_{\rm ann} v \rangle = H(T_f) \longrightarrow T_f = \frac{M_{\rm X}}{\ln\left(\frac{g_{\rm X} M_{\rm X} M_{\rm Pl}^* \sigma_0}{(2\pi)^{3/2}}\right)} \,.$$

Bethe formula:

s-wave: $\sigma_{ann} = \frac{\sigma_0}{v}$

Weakly Interacting Massive Particles

density after freeze-out: $n_{X}(T_{f}) = \frac{T_{f}^{2}}{M_{P}^{*}\sigma_{0}}$ present density: $n_{X}(T_{0}) = \left(\frac{a(T_{f})}{a(T_{0})}\right)^{3} n_{X}(T_{f}) = \left(\frac{s_{0}}{s(T_{f})}\right) n_{X}(T_{f}) \propto \frac{1}{T_{f}}$

 $X + \bar{X}$ contribution to critical density:

$$\Omega_{\rm X} = 2 \frac{M_{\rm X} n_{\rm X}(T_0)}{\rho_c} = 7.6 \frac{s_0 \ln \left(\frac{g_{\rm X} M_{\rm Pl}^{\rm M} M_{\rm X} \sigma_0}{(2\pi)^{3/2}}\right)}{\rho_c \sigma_0 M_{\rm Pl} \sqrt{g_*(T_f)}}$$
$$= 0.1 \cdot \left(\frac{(10 \text{ TeV})^{-2}}{\sigma_0}\right) \frac{10}{\sqrt{g_*(T_f)}} \ln \left(\frac{g_{\rm X} M_{\rm Pl}^{\rm *} M_{\rm X} \sigma_0}{(2\pi)^{3/2}}\right) \cdot \frac{1}{2h^2}$$

WIMPs: discussion

$$\Omega_{\rm X} = 0.1 \cdot \left(\frac{(10 \text{ TeV})^{-2}}{\sigma_0}\right) \frac{10}{\sqrt{g_*(T_f)}} \ln\left(\frac{g_{\rm X} M_{\rm Pl}^* M_{\rm X} \sigma_0}{(2\pi)^{3/2}}\right) \cdot \frac{1}{2h^2}$$

- natural DM: subweak-scale cross section $\sigma_0 \sim 0.01 \times \sigma_W$ say, $M_X \sim 1$ TeV or X is not a weak gauge eigenstate
- naturaly "light" unitarity $\sigma_0 \lesssim \frac{4\pi}{M_{\star}^2} \longrightarrow M_X \lesssim 100 \text{ TeV}$
- all stable particles with smaller σ₀ are forbidden !!
- WIMPs remain in kinetic equilibrium with plasma till $T \sim 10 \,\text{MeV}$

this is Cold Dark Matter, $v_{RD/MD} \ll 10^{-3}$

WIMPs may form dark halos (clumps) much lighter than dwarf galaxies

Weakly IMPs are mostly welcome (e.g. LSP in SUSY)

We can fully explore the model !!

lectures by S.Demidov

• Direct searches for Galactic Dark Matter ($v \sim 10^{-3}$)

$$X +$$
nuclei $\rightarrow X +$ nuclei $+ \Delta E$

• Can search for WIMPs in cosmic rays: products of WIMPs annihilation (in Galactic center, dwarf galaxies, Sun)

$$X + \bar{X} \rightarrow p\bar{p}, \ e^+e^-, \ v, \gamma, \dots$$

• Can search for WIMPs in collision experiments (LHC):

$$X + \bar{X} \leftrightarrow SM + SM' + \dots$$

Prospects in WIMP searches

Constraining the DM model parameter space

M.G. Aartsen at al (2016)

Dmitry Gorbunov (INR)

Present indirect limits on DM annihilation (clumps..)

Dmitry Gorbunov (INR)

LHC limits for annihilation

1502.01518

If thermal CDM but not Weakly IMPs?

We still can study the model if DM annihilates (partly) into SM particles

• But DM particle X can be light and feebly coupled (t-channel)

$$\sigma_0 \sim rac{\xi^4}{M_X^2}$$

- ξ is not a gauge coupling within GUT !
- With small σ_0 one needs entropy production
- σ_0 may be increased by *s*-channel resonance, $M_Y \approx 2M_X$
- annihilation can be amplified by co-annihilation channels, $X + A \rightarrow SM$
- With light messangers between Dark and Visible sectors many estimates change, say $\sigma_0 = \sigma_0(\nu)$
- DM interaction at freeze-out and now are not the same say, Sommerfield enhancement of the annihilation of slow particles $v \sim 10^{-3}$

- 2 Thermal Dark Matter
- 3 Non-thermal candidates

4 Summary

Non-thermal candidates		船
Dark Matter: non-thermal p	roduction	
 in the primordial plasma of SM particles (via scatterings, oscillations): 		
(via soutierings, osoliations).	sterile neutrino of 1-50 keV	
at phase transitions:	axion of $10^{-4} - 10^{-7} \text{eV}$	
	Q-balls	
during reheating (after inflation)	?): black holes	
	any guy coupled (only) to inflaton	
perturbatively:	inflaton decays	
non-perturbatively:	Bose-enhancement of coherent production by external field	
while the Universe expands:		
gravity	, produces any particles at $H \sim M_X$	

Dmitry Gorbunov (INR)

Gravitino production

$$\begin{aligned} \mathscr{L} &= \frac{1}{F} \partial^{\mu} \psi \cdot J^{SUSY}_{\mu} , \quad \tilde{G}_{\mu} \to \tilde{G}_{\mu} + i \sqrt{4\pi} \frac{M_{Pl}}{F} \partial_{\mu} \psi \\ m_{3/2} &= \sqrt{\frac{8\pi}{3}} \frac{F}{M_{Pl}} \iff \Lambda = 0 \end{aligned}$$

$$1 \ {
m TeV} \lesssim \sqrt{\it F} \lesssim M_{Pl} \,, \quad 2\cdot 10^{-4} \ {
m eV} \lesssim m_{3/2} \lesssim M_{Pl}$$

LSP in low scale SUSY breaking models

 $2\cdot 10^{-4}~\text{eV} \lesssim \textit{m}_{3/2} \lesssim 100~\text{GeV} \longrightarrow \sqrt{\textit{F}} \lesssim 10^{10}~\text{GeV}$

Thermal equilibrium is forbidden

(fermion; would be hot DM):

$$\Omega_{3/2} = \frac{m_{3/2} \cdot n_{3/2}}{\rho_c} = 0.2 \left(\frac{m_{3/2}}{200 \,\mathrm{eV}}\right) \left(\frac{g_{3/2}}{2}\right) \left(\frac{210}{g_*(T_d)}\right) \ \frac{1}{2h^2}$$

Dmitry Gorbunov (INR)

Non-thermal candidates

Gravitino production in scatterings and decays

Outcome depends on initial conditions !!!

Dmitry Gorbunov (INR)

ЯN ИК

Axion: Natural but fine-tuned

Theory and Nature:

Dmitry Gorbunov (INR)

Lecture #1, 7 August 2019

DIAS-TH Summer 2019 29 / 37

ä

Non-thermal candidates

Seesaw mechanism: $M_N \gg 1 \text{ eV}$

With $m_{active} \lesssim 1 \text{ eV}$ we work in the seesaw (type I) regime:

$$\mathscr{L}_{N} = \overline{N}i\partial N - f\overline{L}_{e}^{c}\widetilde{H}N - \frac{M_{N}}{2}\overline{N}^{c}N + \text{h.c.}$$

Higgs gains $\langle H \rangle = v / \sqrt{2}$ and then

$$\mathscr{V}_{N} = \frac{1}{2} \left(\overline{v}_{e}, \overline{N}^{c} \right) \begin{pmatrix} 0 & v \frac{f}{\sqrt{2}} \\ v \frac{f}{\sqrt{2}} & M_{N} \end{pmatrix} \begin{pmatrix} v_{e} \\ N \end{pmatrix} + \text{h.c.}$$

For a hierarchy $M_N \gg M^D = v \frac{f}{\sqrt{2}}$ we have

flavor state $v_e = Uv_1 + \theta N$ with $U \approx 1$ and

active-sterile mixing:
$$\theta = \frac{M^D}{M_N} = \frac{v f}{2M_N} \ll 1$$

and mass eigenvalues

$$\approx M_N$$
 and $-m_{active} = \theta^2 M_N \ll M_N$

Dmitry Gorbunov (INR)

Sterile neutrino: well-motivated keV-mass Dark Matter

massive fermions giving mass to active neutrino through mixing (seesaw)

$$m_a \sim \frac{f^2 v^2}{M_N^2} M_N \sim \theta^2 M_N$$

• unstable, $N \rightarrow vvv$ is always open but exceeding the age of the Universe if

(applicable for $M_N < M_W$)

$$\theta^2 < 1.5 \times 10^{-7} \left(\frac{50 \,\mathrm{keV}}{M_N}\right)^5$$

• with seesaw constraint $m_a \sim \theta^2 M_N$

$$au_{N
ightarrow 3
u} \sim 1/\left(G_F^2 M_N^5 heta_{lpha N}^2
ight) \sim 1/\left(G_F^2 M_N^4 m_
u
ight) \sim 10^{11}\, ext{yr}\,(10\, ext{keV}/M_N)^4$$

Dmitry Gorbunov (INR)

Non-thermal candidates

Sterile neutrino: indirect searches

$$m_a \sim rac{f^2 v^2}{M_N^2} M_N \sim heta^2 M_N$$

unstable, but exceeding the age of the Universe if

$$\frac{\theta^2}{3\times 10^{-3}} < \left(\frac{10\,\text{keV}}{M_N}\right)^5$$

 DM sterile neutrinos can be searched at X-ray telescopes because of two-body radiative decay
 give limits in absence of the feature

a narrow line $(\delta E_{\gamma}/E_{\gamma} \sim v \sim 10^{-3})$ at photon frequency $E_{\gamma} = M_N/2$ $\frac{\theta^2}{10^{-11}} \lesssim \left(\frac{10 \text{ keV}}{M_N}\right)^4$

... present searches

- upper limits on mixing: from *X*-ray searches
- lower limits on mass: from structure formation with $p_N \sim T$, DM free streaming

too fast at T = 1 eV

DIAS-TH Summer 2019

34/37

AN AN

ИI ЯN ИR

Results for details see 1705.02184

Important:

 $m_a \sim \theta^2 M_N$

- seesaw light sterile neutrino (dashed lines)
- 2 can be directly tested !! (green and white lines)

Outline

- 2 Thermal Dark Matter
- 3 Non-thermal candidates

Summary

Summary (I)

We need DM both in past (cosmology)

and at present (astrophysics)

- Por stability a symmetry is needed
- There are claimed discrepancies between CDM simulations and observations of small scale structures, observations of central regions of dwarf galaxies
- WDM? selfinteracting DM? no proof
- Structures: DM cannot be hot (e.g. SM neutrinos can not help)
- WIMPs (neutralino) are natural candidates for Cold Dark Matter
- Ø Much more options for WIMP-like candidates...
- Generally, heavy and/or feebly coupled thermal relics

are forbidden !!