Dubna International Advanced School of Theoretical Physics

Dark Side of the Universe I

Alexander Vikman

06.08.2019

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

Ultralight scalars as cosmological dark matter Hui, Ostriker, Tremaine, Witten arXiv:1610.08297

Ultralight scalars as cosmological dark matter Hui, Ostriker, Tremaine, Witten arXiv:1610.08297

Modified Newtonian Dynamics (MOND): Observational Phenomenology and Relativistic Extensions Famaey, McGaugh arXiv:1112.3960

Ultralight scalars as cosmological dark matter Hui, Ostriker, Tremaine, Witten arXiv:1610.08297

- Modified Newtonian Dynamics (MOND): Observational Phenomenology and Relativistic Extensions Famaey, McGaugh arXiv:1112.3960
- Lectures on Dark Matter Physics Mariangela Lisanti arXiv:1603.03797

Standard Model of Particle Physics

Standard Model of Particle Physics

Dark Matter

27%

Standard Model of Particle Physics

Dark Matter

27%

68%

we feel them through gravity only!

Where are we?

Radius of the observable universe is about 46.5 billion light-years (14 billion pc).

1 pc=parsec is equal to about 3.26 light-years (31 trillion kilometres)

The Universe is practically isotropic and homogeneous on scales larger than

1 pc=parsec is equal to about 3.26 light-years (31 trillion kilometres)

Credit: NASA/JPL-Caltech/GSFC/SDSS

Dark Matter

on "Small" Scales

Vera Rubin, 1970-80

Dark Matter

on "Small" Scales

Vera Rubin, 1970-80

Galaxy Evolution Explorer image

Dark Matter

on "Small" Scales

Vera Rubin, 1970-80

Andromeda Galaxy (M31)

Galaxy Evolution Explorer image

 $\frac{GM(r)}{r^2} = \frac{v^2}{r}$

Figure 1: Rotation curves of spiral galaxies as measured in the original Rubin *et al.* paper (1980) Most galaxies show a flattening of the circular velocity at large radial distances.

Figure 1: Rotation curves of spiral galaxies as measured in the original Rubin *et al.* paper (1980) Most galaxies show a flattening of the circular velocity at large radial distances.

Figure 1: Rotation curves of spiral galaxies as measured in the original Rubin *et al.* paper (1980) Most galaxies show a flattening of the circular velocity at large radial distances.

observations $v(r) \simeq const$

Figure 1: Rotation curves of spiral galaxies as measured in the original Rubin *et al.* paper (1980) Most galaxies show a flattening of the circular velocity at large radial distances.

observations $v(r) \simeq const$ $M = 4\pi \int_0^r dr' r'^2 \rho(r') \qquad M \propto r \qquad \rho \propto \frac{1}{r^2}$

$$M_{halo} \sim 10^{12} M_{\odot}$$
 but 10^{11} stars

 $\rho_{DM} \sim 0.3\,{\rm GeV/cm^3}$

 $R_{halo} \sim 100 \,\mathrm{kpc}$ but $R_{Earth} \sim 8 \,\mathrm{kpc}$

$$\langle v \rangle \sim \sqrt{\frac{GM_{halo}}{R_{halo}}} \sim 200 \text{ km/s}$$

Non-relativistic!

DUST is good enough...

phase space density for a DM particle $f(\mathbf{X}, \mathbf{V})$

phase space density for a DM particle $f(\mathbf{X}, \mathbf{V})$

collision-less Boltzmann equation

$$\frac{\partial f}{\partial t} + \dot{\mathbf{x}}\frac{\partial f}{\partial \mathbf{x}} + \dot{\mathbf{v}}\frac{\partial f}{\partial \mathbf{v}} \simeq 0$$

phase space density for a DM particle

collision-less Boltzmann equation

$$\frac{\partial f}{\partial t} + \dot{\mathbf{x}} \frac{\partial f}{\partial \mathbf{x}} + \dot{\mathbf{v}} \frac{\partial f}{\partial \mathbf{v}} \simeq 0$$

$$f(I(\mathbf{x}, \mathbf{v})) \qquad \frac{d}{dt}I(\mathbf{x}, \mathbf{v}) = 0$$

phase space density for a DM particle

collision-less Boltzmann equation

$$f(\mathbf{X}, \mathbf{V})$$

$$\frac{\partial f}{\partial t} + \dot{\mathbf{x}}\frac{\partial f}{\partial \mathbf{x}} + \dot{\mathbf{v}}\frac{\partial f}{\partial \mathbf{v}} \simeq 0$$

Jeans Theorem: stationary solution f

$$\left(I(\mathbf{x}, \mathbf{v})\right) \qquad \frac{d}{dt}I(\mathbf{x}, \mathbf{v}) = 0$$

$$E = \frac{1}{2}v^2 + \Phi$$
 as $I(\mathbf{x}, \mathbf{v})$

phase space density for a DM particle

collision-less Boltzmann equation $\frac{\partial f}{\partial t} + \dot{\mathbf{x}}\frac{\partial f}{\partial \mathbf{v}} + \dot{\mathbf{v}}\frac{\partial f}{\partial \mathbf{v}} \simeq 0$

Jeans Theorem: stationary solution

$$f(\mathbf{X}, \mathbf{V})$$

$$f(I(\mathbf{x}, \mathbf{v})) \qquad \frac{d}{dt}I(\mathbf{x}, \mathbf{v}) = 0$$

$$E = \frac{1}{2}v^2 + \Phi \quad \text{as} \quad I(\mathbf{x}, \mathbf{v})$$

assume $f \propto e^{-E/\sigma^2}$ so that $\rho \propto \int_0^\infty dv v^2 f \propto e^{-\Phi/\sigma^2}$

phase space density for a DM particle

collision-less Boltzmann equation $\frac{\partial f}{\partial t} + \dot{\mathbf{x}}\frac{\partial f}{\partial \mathbf{v}} + \dot{\mathbf{v}}\frac{\partial f}{\partial \mathbf{v}} \simeq 0$

Jeans Theorem: stationary solution

$$f(\mathbf{X}, \mathbf{V})$$

$$f(I(\mathbf{x}, \mathbf{v})) \qquad \frac{d}{dt}I(\mathbf{x}, \mathbf{v}) = 0$$

$$E = \frac{1}{2}v^{2} + \Phi \quad \text{as} \quad I(\mathbf{x}, \mathbf{v})$$

assume $f \propto e^{-E/\sigma^{2}}$ so that $\rho \propto \int_{0}^{\infty} dv v^{2} f \propto e^{-\Phi/\sigma^{2}}$

Poisson equation $\Delta \Phi = 4\pi G\rho$ results in $\rho \propto \frac{1}{r^2}$ $f \propto e^{-v^2/\sigma^2}$

DM halo profiles from numerical simulations, Cusp/Core?

TASI 2015, Lectures on Dark Matter Physics, Lisanti

Figure 2: (left) A comparison of the NFW (solid red), Einasto (dashed blue), and Burkert with $r_s = 0.5$ (dotted green) and 10 kpc (dot-dashed purple) profiles. Figure from [32]. (right) The expected velocity distribution from the Via Lactea simulation (solid red), with the 68% scatter and the minimum/maximum values shown by the light and dark green shaded regions, respectively. For comparison, the best-fit Maxwell-Boltzmann distribution is shown in dotted black. Figure from [33].

Bullet Cluster: Dark Matter passes by "without" interactions

It is at a comoving radial distance of 1.141 Gpc (3.7 billion light-years, z=0.3) NASA/CXC/M. Weiss - Chandra X-Ray Observatory: 1E 0657-56

Galaxy Cluster MACS J0025.4–1222 Hubble Space Telescope ACS/WFC Chandra X-ray Observatory

Near Infrared • Hubble Visible • Hubble X-ray • Chandra Dark Matter Map

1.5 million light-years

NÁ

F.

70"

460 kiloparsecs

Abell 520, Train Wreck Cluster

Abell 520, Train Wreck Cluster

FIG. 3. The centripetal acceleration observed in rotation curves, $g_{obs} = V^2/R$, is plotted against that predicted for the observed distribution of baryons, $g_{bar} = |\partial \Phi_{bar}/\partial R|$ in the upper panel. Nearly 2700 individual data points for 153 SPARC galaxies are shown in grayscale.

FIG. 3. The centripetal acceleration observed in rotation curves, $g_{obs} = V^2/R$, is plotted against that predicted for the observed distribution of baryons, $g_{bar} = |\partial \Phi_{bar}/\partial R|$ in the upper panel. Nearly 2700 individual data points for 153 SPARC galaxies are shown in grayscale.

$$a_0 \simeq \frac{1}{6} H_0 \simeq 1.2 \times 10^{-8} \text{ cm/s}^2$$

FIG. 3. The centripetal acceleration observed in rotation curves, $g_{obs} = V^2/R$, is plotted against that predicted for the observed distribution of baryons, $g_{bar} = |\partial \Phi_{bar}/\partial R|$ in the upper panel. Nearly 2700 individual data points for 153 SPARC galaxies are shown in grayscale.

 $a_0 \simeq \frac{1}{6} H_0 \simeq 1.2 \times 10^{-8} \text{ cm/s}^2$

MOND, Milgrom, 1983

FIG. 3. The centripetal acceleration observed in rotation curves, $g_{obs} = V^2/R$, is plotted against that predicted for the observed distribution of baryons, $g_{bar} = |\partial \Phi_{bar}/\partial R|$ in the upper panel. Nearly 2700 individual data points for 153 SPARC galaxies are shown in grayscale.

$$\eta_{10} \equiv 10^{10} \times \frac{n_N}{n_\gamma}$$

$$\Omega_b h_{75}^2 \simeq 6.53 \times 10^{-3} \eta_{10}$$
For $\eta_{10} > 10$

$$X_D^f \propto \exp(-0.1\eta_{10})$$
For $\eta_{10} \lesssim 10$

$$X_D^f \simeq 4 \times 10^{-4} \eta_{10}^{-1}$$

observations: $3 < \eta_{10} < 7$

Mukhanov cosmology textbook

Dark Matter in Cosmology, CMB

Dark Matter in Cosmology, CMB

PLANCK 2013

Dark Matter in Cosmology, CMB

PLANCK 2013

Positions of the peaks
$$l_n \simeq \pi \varrho^{-1} \left(n - \frac{1}{8} \right)$$

 $\varrho \simeq 0.014 \left(1 + 0.13 \xi \right)^{-1} \left(\Omega_m h_{75}^{3.1} \right)^{0.16}$ $\xi = \frac{1}{3c_s^2} - 1 \simeq 17 \left(\Omega_b h_{75}^2 \right)^{0.16}$

...the height of the first peak together with the existence of the second peak are in themselves convincing evidence of the following key qualitative features of our universe: that the total cold matter density is less than the critical density, that cold dark matter exists and that its density exceeds the baryon density.

...the height of the first peak together with the existence of the second peak are in themselves convincing evidence of the following key qualitative features of our universe: that the total cold matter density is less than the critical density, that cold dark matter exists and that its density exceeds the baryon density.

 $T^{\rm DM}_{\mu\nu} = (\rho + p) u_{\mu} u_{\nu} - p g_{\mu\nu}$

 $T^{\rm DM}_{\mu\nu} = (\rho + p) u_{\mu}u_{\nu} - pg_{\mu\nu}$ $w_{\rm DM} = p/\rho$

Kopp, Skordis, Thomas, (2016)

$$T_{\mu\nu}^{\rm DM} = (\rho + p) u_{\mu} u_{\nu} - p g_{\mu\nu}$$
$$w_{\rm DM} = p/\rho$$

 $-0.000896 < w_{\rm DM} < 0.00238$

Kopp, Skordis, Thomas, (2016)

Kopp, Skordis, Thomas, (2016)

