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Introduction

The ordinary baryonic matter is not the dominant form of material
in the universe. It is accepted that most of the mass appears to be
in some as-yet-undiscovered strange new form which is
non-luminous known as Dark Matter (DM).

It is believed that the dark matter is the main component,
responsible for the large-scale structure formation in the universe.

Observational evidence indicating the existence of the dark matter
(i) velocity scattered of stars in the galactic plane by Oort(J. Oort,
Bull. Astron. Ins. Nether. VI, 249, 1932) (ii) Zwicky estimated the
velocity dispersion in the coma cluster(F. Zwicky, Helvet. Phys.
Acta 6, 110, 1933) (iii) rotational curves of galaxies Rubin (V. C.
Rubin and W. K. J. Ford, The Astrophysical Journal 159, 379,
1970) (iv) bullet cluster (1E0657− 558 ) (M. Markevitch, A. H.
Gonzalez, D. Clowe, A. Vikhlinin, L. David, W. Forman, C. Jones,
S. Murray and W. Tucker, Astrophys. J. 606, 819, 2004).

Dark matter particle could be Hot Dark Matter (HDM), Cold Dark
Matter (CDM), weakly interacting massive particles (WIMPs).
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Background Work

Dark matter could be described by a fluid with non-zero
effective pressure (S. Bharadwaj and S. Kar, Phys. Rev. D
68, 023516, 2003; K.-Y. Su and P. Chen, Phys. Rev. D 79,
128301, 2009).

Rahaman et al. (F. Rahaman, K. K. Nandi, A. Bhadra, M.
Kalam and K. Chakraborty, Phys. Lett. B 694, 10, 2010)
considered dark matter as perfect fluid in their work.

Dark matter may be modeled as a mixture of two
non-interacting perfect fluids as was shown by Harko and
Lobo (Tiberiu Harko and Francisco S. N. Lobo,
arXiv:1106.2642v1 [gr-qc]).
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Objective

We have proposed a new model by considering the stellar
object consists of core and envelope regions.

A particular EoS to describe isotropic fluid dark matter in the
core region which provides constant density throughout the
interior. The outer envelope region is considered as anisotropic
in nature and satisfying a linear pressure-density relation.

In the core boundary, we have assume de-sitter metric as the
exterior while Schwarzschild solution is assumed to describe
the exterior boundary of the stellar object. Accordingly, the
matching conditions are used in addition to setting radial
pressure zero at the exterior boundary.

Energy conditions and stability has also been discussed for the
developed model.

Dr Shyam Das An analytical fluid dark matter model



Interior metric

We consider the line element in Schwarzschild co-ordinate system
to describe the interior of a static and spherically symmetric stellar
configuration as :

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2
(

dθ2 + sin2 θdφ2
)

, (1)

where eν(r) and eλ(r) are known as the metric potential functions,
where ν(r) and λ(r) are functions of the radial coordinate ‘r ’ only.
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Energy momentum tensor

For an anisotropic matter distribution, the energy momentum
tensor can be written as:

Tµν = {ρ(r)+pt(r)}UµUν−pt(r)gµν +{pr (r)−pt(r)}χµχν , (2)

where ρ(r) is the energy density, pr (r) is the radial pressure and
pt(r) is the tangential pressure of the of the fluid configuration.
χµ is an unit 4-vector along the radial direction and Uµ is the
4-velocity. The quantities obey the following relation: χµχ

µ = 1,
χµU

µ = 0.
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Einstein field equations

The Einstein field equations can be written as:

Tµν =
1

8π

{

Rµν −
1

2
R gµν

}

, (3)

where Tµν , Rµν , gµν and R are the stress energy tensor, Ricci
tensor, metric tensor and Ricci scalar, respectively.
The Einstein field equations (3) read as the following form for the
metric (1) along with the energy tensor (2):

ρ(r) =
1

8π

{

1− e−λ

r2
+

e−λλ′

r

}

, (4)

pr (r) =
1

8π

{

e−λ − 1

r2
+

e−λν ′

r

}

, (5)

pt(r) =
e−λ

8π

{

ν ′′

2
+

ν ′2

4
−

ν ′λ′

4
+

ν ′ − λ′

2r

}

. (6)
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Anisotropy

In a compact object, the pressures in radial and transverse
directions may not be equal and the difference of radial pressure
(pr ) and tangential pressure (pt) produces anisotropy.
Identified factors assuming the compact star as anisotropic:

In the high density regime of compact stars where the
nuclear interactions must be treated relativistically, there may
develop anisotropy inside the stellar objects as shown by
Ruderman, Canuto (Annu. Rev. Astron. Astrophys. 10, 427,
1972, Ann. Rev. Astron. Astrophys. 12, 167, 1974).

In relativistic stars anisotropy might occur due to the
existence of a solid core or type 3A superfluid as pointed out
by Kippenhahn and Weigert (Springer-Verlag, Berlin, 1990).

Strong magnetic fields can also regard as a source of
anisotropic pressure inside a compact object as discussed by
Weber ( IOP Publishing, Bristol, 1999).
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continue...

Anisotropy may also develop due to the slow rotation of
fluids (Astrophys. J. 438, 308, 1995).
A mixture of perfect and a null fluid may also be formally
described as an anisotropic fluid (Phys. Rev. D 22, 807,
1980).
The existence of anisotropy in astrophysical objects may arise
due to viscosity.
Different kinds of phase transitions (JETP 79, 1137, 1980).
Pion condensation (Phys. Rev. Lett. 29, 382, 1972).
The presence of strong electromagnetic field (Phys. Rev. D
70, 067301, 2004).
Self-bound systems composed of scalar fields, the so-called
boson stars are naturally anisotropy (Class. Quantum Grav.

20, R301, 2003).
Wormholes (Am. J. Phys. 56, 395, 1988 ) and gravastars
(Class. Quantum Grav. 22, 4189, 2005) are also considered
as anisotropic as well.
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Generalized Tolman-Oppenheimer-Volkoff equation

From Eqs. (4) and (5), we obtain

ρ(r) + pr (r) =
λ′ + ν ′

8πr
e−λ. (7)

Again from Eq. (5), we get

dpr (r)

dr
=

1

8π

[

e−λ

{

ν ′′

r
−

ν ′λ′

r
−

ν ′ + λ′

r2

}

+
2(1− e−λ)

r3

]

. (8)

Then, by using Eqs. (4)-(8), we can write

ν ′{ρ(r) + pr (r)}

2
+

dpr (r)

dr
=

2{pt(r)− pr (r)}

r
. (9)

This is the generalized Tolman-Oppenheimer-Volkoff (TOV)
equation for anisotropic fluid distribution.
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The interior Solutions

To solve the system of equations, we assume a density profile of
the dark matter as:

ρ(r) =
k

r(1 + r
b
)
, (10)

where, b is the scale radius and k is a constant. We assume that
the interior region of star is divided into two regions:
(i) The core, 0 ≤ r ≤ b,
and
(ii) The outer region, b < r ≤ R to avoid the singularity at the
center of stellar configuration.
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Interior Solution: Solution in the core region, 0 ≤ r ≤ b

The core of stellar object is isotropic in nature and satisfy the
following equation of state (EoS):

p(r) = pr (r) = pt(r) = −ρ(r).

Using Eqs. (9) and (10), we obtain

ρ(r) = constant = ρc =
k

2b
. (11)
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continue...

The mass of the core can obtain as:

m(r) = 4π

∫ r

0
r ′2ρcdr

′ =
2r2kπ

3
. (12)

The compactness parameter is

u(r) =
2m(r)

r
=

4rkπ

3
, (13)

The surface redshift is

z(r) = {1− u(r)}−
1
2 − 1 =

(

1−
4rkπ

3

)− 1
2

− 1. (14)

In Schwarzschild coordinate, we can write

e−λ = 1−
2m(r)

r
= 1−

4rkπ

3
. (15)
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Interior Solution: Solution in the outer region, b ≤ r ≤ R

For the outer region, we assure the density profile

ρ(r) =
k

r(1 + r
b
)
, (16)

and an EoS in the following linear form:

pr (r) = αρ− β, (17)

where α, β are constants.
The mass of the stellar object can be obtained as:

m(r) = 4π

{
∫ b

0
ξ2ρcdξ +

∫ r

b

ξ2ρ(ξ)dξ

}

(18)

=
2bkπ

3
{6r − 5b − 6bf1} , (19)

where f1 = log
(

r+b
2b

)

.
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continue...

The compactness parameter:

u(r) =
2m(r)

r
=

4bkπ

3r
[6r − 5b − 6bf1] . (20)

Surface redshift:

z(r) = {1− u(r)}−
1
2 − 1

=

(

1−
4bkπ

3r
[6r − 5b − 6bf1]

)− 1
2

− 1. (21)

In Schwarzschild coordinate, we can write

e−λ = 1−
2m(r)

r
,

= 1−
4bkπ

3r
[6r − 5b − 6bf1] . (22)
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continue...

Using Eqs. (10) and (17), we get the expression of radial pressure

pr (r) =
αk

r(1 + r
b
)
− β. (23)

On imposing Eqs. (22)-(23) in Eq. (5) we get

ν ′(r) =
4π

r(r + b)f2

[

bk{5b2 − br − br2(α+ 1)}

+6r3β(r + b) + 6b2k(r + b)f1

]

, (24)

whereas
f2 =

[

4bkπ(6r − 5b)− 24b2kπf1 − 3r
]

. (25)
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continue...

The transverse pressure and anisotropic factor are obtained as:

pt(r) =
[

6rβ(r + b)f3 − 12πr4β2(r + b)2

+12πkb2f1f4 − b2kf5

][

2r(r + b)2f2

]−1
, (26)

∆(r) = β −
αk

r(1 + r
b
)
+

[

2r(r + b)2f2

]−1
×

[

6rβ(r + b)f3 − 24πr4β2(r + b)2 − b2kf5

+12πkb2f1f4

]

, (27)

where

f3 = 5πkb3 − b2kπr + r2 + br{1 + 4kπr(α − 1)},

f4 = bk{b(α− 1)− r(α+ 1)} − 3rβ(r + b)2,

f5 = 2bkπr(1− 11π) + 10b2kπ(α− 1)

+3r{α+ 4kπr(α + 1)2}. (28)
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Boundary conditions

To determine the values of involved constants within solutions, we
have matched our solutions with the de-sitter metric at the core
boundary r = b and the exterior Schwarzschild solution at the
surface boundary r = R (> 2M). The de-sitter and exterior
Schwarzschild metric are given by

ds2 =

(

1−
r2

d2

)

dt2 −

(

1−
r2

d2

)−1

dr2

−r2(dθ2 + sin2 θdφ2), (29)

ds2 =

(

1−
2M

r

)

dt2 −

(

1−
2M

r

)−1

dr2

−r2(dθ2 + sin2 θdφ2). (30)
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Continue....

e−λ|r=b = eν |r=b =

(

1−
b2

d2

)

= 1−
4πkb

3
, (31)

e−λ|r=R = eν |r=R =

(

1−
2M

R

)

= 1−
4bkπ

3R
[6R − 5b − 6bf1(R)] , (32)

pr (R) = 0. (33)

Using these boundary conditions (31)-(33), we have

k = 3M
2πb(6R−5b−6bf1(R)) ; d =

√

3b
4πk ; β = αbk

R(R+b) . where b is a free

parameter, which will be the measurement of the core radius of the
stellar fluid configuration. For our model, we consider b = 2 km.
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Numerical values of constants (Table-1)

Here A = EXO 1785 − 248,B = Vela X − 1,C = 4U 1538 − 52.

Star M(M⊙) R(km) α(km−2) β(km−2) b(km) k d(km)

A 1.3 8.8 0.3 0.00006 2 0.010 6.8
0.4 0.00008 2 0.010 6.8
0.5 0.00011 2 0.010 6.8
0.6 0.00012 2 0.010 6.8

Star M(M⊙) R(km) α(km−2) β(km−2) b(km) k d(km

B 1.77 9.56 0.3 0.00007 2 0.012 6.2
0.4 0.00009 2 0.012 6.2
0.5 0.00011 2 0.012 6.2
0.6 0.00013 2 0.012 6.2
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continue...

Star M(M⊙) R(km) α(km−2) β(km−2) b(km) k d(km

C 0.87 7.87 0.3 0.000061 2 0.007 7.8
0.4 0.000081 2 0.007 7.8
0.5 0.000101 2 0.007 7.8
0.6 0.000122 2 0.007 7.8
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Graphical Presentation: Density

Compact star EXO 1785-248 corresponding to α = 0.3, 0.4, 0.5
and 0.6.
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Figure 1: Behavior of the density with respect to the radial coordinate r

for the compact star EXO 1785-248 corresponding to the numerical value
of constants given in Table-1
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Graphical Presentation: Pressures
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Figure 2: Behaviors of the radial and transverse pressures with respect to
the radial coordinate r for the compact star EXO 1785-248 corresponding
to the numerical value of constants given in Table- 1
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Mass and Compactness factor

Mass function and compactness parameter: m(r) and u(r) are
finite, zero at the centre and then monotonically increasing toward
the outer layer surface of the fluid configuration.
Moreover, the value of compactness parameter is more that the
mass in the region 0 < r < b and coincide at the core boundary
r = b = 2 km.
According to Buchdahl (H. A. Buchdahl, Phys. Rev. 116, 1027
(1959)), at the outer layer surface of compact star,
us = u(R) = 2M

R
< 8

9 . Compactness parameter are given in
Table-2, ensure that our solutions satisfied the Buchdahl limit.
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Graphical Presentation: Mass and Compactness factor

Buchdahl Limit
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Figure 3: Behaviors of the mass and compactness parameter with respect
to the radial coordinate r for the compact star EXO 1785-248
corresponding to the numerical value of constants given in Table-1
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Physical features of the model: Energy Conditions

The physical conditions regarding the compact star for our present
solutions.

Energy Conditions:

NECr : ρ(r) + pr (r) ≥ 0, NECt : ρ(r) + pt(r) ≥ 0.

WECr : ρ(r) ≥ 0, ρ(r) + pr (r) ≥ 0.

WECt : ρ(r) ≥ 0, ρ(r) + pt(r) ≥ 0.

SEC : ρ(r) + pr (r) + 2pt(r) ≥ 0. (34)

Moreover, the energy density is positive and ρ(r) + p(r) = 0
within the core region i.e. NEC and WEC are satisfied there.
Consequently, the solutions represent a physical matter
distribution.
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Graphical Presentation: Energy
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Figure 4: Behaviors of the energy conditions with respect to the radial
coordinate r for the compact star EXO 1785-248 corresponding to the
numerical value of constants given in Table-1
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Equilibrium condition: TOV equation

The equilibrium condition represents by the
Tolman-Oppenheimer-Volkoff (TOV) equation which has the
generalized form for the anisotropic fluid distribution can be
written as:

−
Mg{ρ(r) + pr (r)}

r2
e(λ−ν)/2 −

dpr (r)

dr
+

2∆(r)

r
= 0, (35)

where Mg (r) is the effective gravitational mass, which can obtain
with the help of Tolman-Whittaker mass formula as:

Mg (r) =
r2

2
ν ′e(ν−λ)/2. (36)

Therefore, Eq. (35) reduces to

−
ν ′{ρ(r) + pr (r)}

2
−

dpr (r)

dr
+

2∆(r)

r
= 0. (37)

Eq. (37) also can be written as

Fg (r) + Fh(r) + Fa(r) = 0. (38)
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continue...

Gravitational force,Fg (r) = −ν′{ρ(r)+pr (r)}
2 ;

Hydrostatic force,Fh(r) = −dpr (r)
dr

;

Anisotropic force, Fa(r) =
2∆(r)

r
.
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Figure 5: Behaviors of the forces with respect to the radial coordinate r

for the compact star EXO 1785-248.
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Stability analysis: Causality condition

Sound velocity: vr (r) =
√

dpr (r)
dρ(r) , vt(r) =

√

dpt(r)
dρ(r) . Causality condition:

0 ≤ vr (r), vt (r) < 1.
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Figure 6: Behaviors of the radial and transverse velocities of sound with
respect to the radial coordinate r for the compact star EXO 1785-248
corresponding to the numerical value of constants given in Table-1
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Stability analysis: Adiabatic index

The relativistic adiabatic index is defined as: Γr (r) =
ρ(r)+pr (r)

pr (r)
dpr (r)
dρ(r) For

our solutions, the value of adiabatic index Γr (r) is more than 4/3.
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Figure 7: Behavior of the adiabatic index with respect to r for the
compact star EXO 1785-248 corresponding to the numerical value of
constants given in Table-1
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Stbility analysis: Harrison-Zeldovich-Novikov criterion

Harrison-Zeldovich-Novikov criterion: dM(ρc)/dρc > 0

M(ρc) =
4πb2ρc

3
[6R − 5b − 6bf1(R)] , (39)

∂M(ρc )

∂ρc
=

4πb2

3
[6R − 5b − 6bf1(R)] > 0. (40)
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Figure 8: Mass vs core density ρc for the compact star EXO 1785-248.
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Graphical Presentation: Anisotropy

Anisotropic factor ∆(r) = 0 in inner part. In the outer region
nature of anisotropy indicates that the force due to anisotropy is
inward-directed i.e. compact star becomes less stable.
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Figure 9: Behavior of the anisotropic factor with respect to the radial
coordinate r for the compact star EXO 1785-248.
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Equation of state parameters

The EoS, pr (r) = −ρ(r) shows that the EoS parmeter ω(r) = −1.
For the real feasible matter distribution, 0 < ωr (r) < 1 (F.
Rahaman, S. Ray, A. K. Jafry, K. chakraborty, Phys. Rev. D 82,
104055 (2010)). The obtained solution satisfy 0 < ωr (r) < 1,
provided in outer part of the fluid configuration and hence the DM
becomes as real feasible matter within outer region. Thus, the
celestial compact stars, which are formed by DM distributed in two
parts: (i) Inner part, formed by unfeasible DM, (ii) Outer part,
formed by real feasible DM.
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Graphical representation: equation of state parameters
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Figure 10: Behaviors of the equation of state parameters with respect to
the radial coordinate r for the compact star EXO 1785-248 corresponding
to the numerical value of constants given in Table-1
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Graphical representation: Stability factor

The stability factor {vr (r)}
2 − {vr (t)}

2 negative refers to a
potentially stable configuration.
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Figure 11: Behavior of the stability factor with respect to the radial
coordinate r for the compact star EXO 1785-248.
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Numerical values of the physical parameters for three
well-known celestial compact stars corresponding to the
values of constant given in Table-1.

We have calculated the numerical values of all physical parameters
for the compact stars EXO 1785 − 248 along with more
well-known compact stars Vela X − 1 and 4U 1538 − 52 in tabular
form to make our solutions more feasible.

Compact ρc (1015) ρs (1014) pnc (1035) zs us Buchdahl
Star (g .cm−3) (g .cm−3) (d .cm−2) Limit

A 3.39 2.84 8.35 0.19 0.29 < 8
9

3.39 2.84 11.1 0.19 0.29 < 8
9

3.39 2.84 13.9 0.19 0.29 < 8
9

3.39 2.84 16.7 0.19 0.29 < 8
9
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continue...

Compact ρc (1015) ρs (1014) pnc (1035) zs us Buchdahl
Star (g .cm−3) (g .cm−3) (d .cm−2) Limit

B 4.11 2.97 10.2 0.26 0.37 < 8
9

4.10 2.97 13.7 0.26 0.37 < 8
9

4.10 2.97 17.1 0.26 0.37 < 8
9

4.10 2.97 20.5 0.26 0.37 < 8
9

Compact ρc (1015) ρs (1014) pnc (1035) zs us Buchdahl
Star (g .cm−3) (g .cm−3) (d .cm−2) Limit

C 2.65 2.73 6.4 0.13 0.22 < 8
9

2.65 2.73 8.5 0.13 0.22 < 8
9

2.65 2.73 10.6 0.13 0.22 < 8
9

2.65 2.73 12.8 0.13 0.22 < 8
9

Here A = EXO 1785 − 248,B = Vela X − 1,C = 4U 1538 − 52.
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Discussions and conclusion

Finally, all the salient key features of our solutions ensure that our
solutions are well-behaved and physically acceptable to represent
the physical DM fluid configuration containing two parts: the
isotropic inner part of unfeasible DM with constant density and
anisotropic outer part filled with feasible DM.
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