Growth of Structure in Perturbed Tachyon Dark Energy Model

Avinash Singh IISER, Mohali, India

With H. K. Jassal, Archana Sangwan and Manbendra Sharma

August 7, 2019

Avinash Singh, IISER M, email-avin.phy@gmail.com Growth of Structure in Perturbed Tachyon Dark Energy Model

Accelerated expansion

- Appr. 95% cover by **dark** sector.
- Simplest model is ACDM model.
- Observations do not rule out $w \neq -1$.

Avinash Singh, IISER M, email-avin.phy@gmail.com

Betoule et al., A&A 568 A22 (2014).

This talk is based on following articles

- Avinash Singh, Archana Sangwan, H.K. Jassal, Low redshift observational constraints on tachyon models of dark energy, JCAP 04 (2019) 047.
- Avinash Singh, H. K. Jassal, Manabendra Sharma, Perturbations in tachyon dark energy and their effect on matter clustering. arXiv:1907.13309.

Tachyon Scalar Field

LagrangianPressure $L = -V(\phi)\sqrt{1 - \partial^{\mu}\phi\partial_{\mu}\phi}$ $P_{\phi} = -V(\phi)\sqrt{1 - \dot{\phi}^2}$

Equation of State $w_{\phi} = \frac{P_{\phi}}{\rho_{\phi}} = \dot{\phi}^2 - 1$

< ∃ >

No phantom like EoS

$$-1 \leq \textit{w}_{\phi} \leq 0$$

Dynamics of tachyon Scalar Field

$$\ddot{\phi} = -(1-\dot{\phi}^2)\left[3H\dot{\phi} + rac{1}{V(\phi)}rac{dV}{d\phi}
ight]$$

Friedmann Equations for $ds^2 = -dt^2 + a^2(t)(dx^2 + dy^2 + dz^2)$

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho$$
, $\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3P)$

where $\rho = \rho_m + \rho_r + \rho_\phi$

Tachyon Potentials

Parameters

Ω_{m0}

- $\bigcirc \phi_0 H_0$
- $\dot{\phi_0}$ or $w_{\phi 0}$

() ϕ_0/ϕ_a

With flatness condition $\Omega_{total} = \Omega_{m0} + \Omega_{r0} + \Omega_{\phi0} = 1$. Data Used

- Supernova-la Union 2.1 data.
- Direct measurement of H(z)
- BAO data (from SDSS DR12, 6dFGS, SDSS DR7, WingleZ surveys)

Background Constraints On $w_{\phi 0} - \overline{\phi_0 H_0}$ Plane

- $w_{\phi 0}$ and $\phi_0 H_0$ are correlated.
- $\phi_0 H_0 \ge 0.775$ at 3σ confidence.
- No upper bound on $\phi_0 H_0$

Background Constraints On $w_{\phi 0} - \phi_0 H_0$ Plane

- $w_{\phi 0}$ and $\phi_0 H_0$ are correlated.
- No upper bound on $\phi_0 H_0$

- For $\phi_0/\phi_a = 0.1$ $\phi_0 H_0 \ge 0.045$
- For $\phi_0/\phi_a = 1.0$ $\phi_0 H_0 \ge 0.45$

Background Constraints on Ω_{m0} - $w_{\phi0}$ Plane

Avinash Singh, IISER M, email-avin.phy@gmail.com

Background Constraints on Ω_{m0} - $w_{\phi0}$ Plane

Avinash Singh, IISER M, email-avin.phy@gmail.com

Comparison between data and theory

Avinash Singh, IISER M, email-avin.phy@gmail.com

Background Cosmology- Evolution

Evolution of density parameters.

Background Cosmology- Evolution for $V(\phi) \propto \phi^{-2}$

Evolution of cosmological phase and equation of state w_{ϕ} .

Background Cosmology- Evolution for $V(\phi) \propto exp(-\phi/\phi_a)$

Figure: Evolution of cosmological phase and equation of state w_{ϕ} .

In matter field

$$\rho(t, \vec{x}) = \rho_b(t) + \delta \rho(t, \vec{x}),$$

$$p(t, \vec{x}) = p_b(t) + \delta p(t, \vec{x}),$$

$$u^{\mu} = u^{\mu}_b + \delta u^{\mu},$$

In scalar field

$$\phi(t,\vec{x}) = \phi_b(t) + \delta\phi(t,\vec{x}).$$

Subscript 'b' stands for average background values.

Perturbed Einstein equations

Growth of Structure can be studied by solving $\delta G^{\mu}_{\nu} = 8\pi G \delta T^{\mu}_{\nu}$

Geometrical part

 $ds^{2} = -(1+2\Phi)dt^{2} + a^{2}(t)(1-2\Phi)[dx^{2} + dy^{2} + dz^{2}]$

 δG^{μ}_{ν}

Source part

$$\delta T^{\mu}_{\nu} = \delta T^{\mu}_{\nu_{(matter)}} + \delta T^{\mu}_{\nu_{(\phi)}}$$

$$\downarrow$$

$$T^{\mu}_{\nu_{(matter)}} = (\rho + p)u^{\mu}u_{\nu} - pg^{\mu}_{\nu}$$
and
$$T^{\mu\nu}_{(\phi)} = \frac{2}{\sqrt{-g}}\frac{\delta(\sqrt{-g}L_{\phi})}{\delta g_{\mu\nu}}$$

Avinash Singh, IISER M, email-avin.phy@gmail.com

Background dynamicsPerturbed dynamics $a(t), \phi_b(t)$ + $\Phi(t, \vec{x}), \delta\phi(t, \vec{x})$

Consider all perturbed quantities Φ , $\delta\phi$, $\delta\rho$, δp and δu^{μ} up to first order.

Solved system of equations in Fourier space; using relation $k = \frac{2\pi}{\lambda_p}$, for a fixed k or λ_p .

Initial conditions at $z_{in} = 1000$

•
$$w_{\phi_{in}} = -1$$
 or $\phi_{in} = 0$.

•
$$\delta \phi_{in} = 0$$
 and $\delta \dot{\phi}_{in} = 0$

Parameters

• $\Omega_{m0} = 0.285$

•
$$\phi_{in}H_0 \approx \phi_0H_0$$

Solution of perturbed equations

• The dynamical equation for gravitational potential-

$$\ddot{\Phi} + 4\frac{\dot{a}}{a}\dot{\Phi} + \left(2\frac{\ddot{a}}{a} + \frac{\dot{a}^2}{a^2}\right)\Phi = -4\pi GV(\bar{\phi})\sqrt{1 - \dot{\phi}^2} \left(\frac{\Phi\dot{\phi}^2 - \delta\dot{\phi}\dot{\phi}}{1 - \dot{\phi}^2}\right)$$
$$-4\pi G\left(\frac{\partial V}{\partial\phi}\right)_{\bar{\phi}}\delta\phi\sqrt{1 - \dot{\phi}^2}$$

• Dynamical equation for scalar field perturbation-

$$\begin{aligned} \frac{\ddot{\delta\phi}}{(1-\dot{\bar{\phi}^2})} + \left[3H + \frac{2\dot{\phi}\ddot{\phi}}{(1-\dot{\bar{\phi}^2})^2}\right]\dot{\delta\phi} \\ + \left[3H\dot{\phi}\frac{V'}{V} + \frac{k^2}{a^2} + \frac{\ddot{\phi}}{(1-\dot{\bar{\phi}^2})}\left(\frac{V'}{V}\right) + \frac{V''}{V}\right]\delta\phi \\ - \left[12H\dot{\phi} + \frac{2(2-\dot{\bar{\phi}^2})\ddot{\phi}}{(1-\dot{\bar{\phi}^2})} + \frac{2V'}{V} + \frac{2\dot{\phi}^4\ddot{\phi}}{(1-\dot{\bar{\phi}^2})^2}\right]\Phi + \frac{5\dot{\phi}^3 - 4\dot{\bar{\phi}}}{(1-\dot{\bar{\phi}^2})}\dot{\Phi} = 0 \end{aligned}$$

Equations for dark energy density contrast and matter density constrast.

$$\delta_{\phi} = \frac{V'(\bar{\phi})}{V(\bar{\phi})}\delta\phi - \left(\Phi\dot{\bar{\phi}}^2 - \dot{\bar{\phi}}\dot{\delta\phi}\right),$$

$$\delta_m = -\frac{1}{4\pi G\rho_m a^{-3}} \left[3\frac{\dot{a}^2}{a^2}\Phi + 3\frac{\dot{a}}{a}\dot{\Phi} + \frac{k^2\Phi}{a^2}\right] - \frac{\delta_{\phi}}{\rho_m a^{-3}}\frac{V(\bar{\phi})}{\sqrt{1 - \dot{\bar{\phi}}^2}}.$$

ヨッ イヨッ イヨッ

Evolution of Gravitational Potential Φ for $V(\phi) \propto \phi^{-2}$

For left panel $\phi_{in}H_0 = 1.0$ and for right panel $\phi_{in}H_0 = 2.0$.

Evolution of Gravitational Potential Φ for $V(\phi) \propto exp(-\phi/\phi_a)$

For left plot $\phi_{in}H_0 = 1.0$ and for right plot $\phi_{in}H_0 = 2.0$.

Evolution of $\delta_m = \frac{\delta \rho_m}{\rho_m}$ for $V(\phi) \propto \phi^{-2}$

For left plot $\phi_{in}H_0 = 1.0$ and for right plot $\phi_{in}H_0 = 2.0$.

A B > A B >

Evolution of
$$\delta_m = \frac{\delta \rho_m}{\rho_m}$$
 for $V(\phi) \propto exp(-\phi/\phi_a)$

For left plot $\phi_{in}H_0 = 1.0$ and for right plot $\phi_{in}H_0 = 2.0$.

- < 글 > < 글 >

э

Evolution of
$$\delta_{\phi} = \frac{\delta \rho_{\phi}}{\rho_{\phi}}$$
 for $V(\phi) \propto \phi^{-2}$

For left plot $\phi_{in}H_0 = 1.0$ and for right plot $\phi_{in}H_0 = 2.0$.

• = • < =</p>

Evolution of
$$\delta_{\phi} = \frac{\delta \rho_{\phi}}{\rho_{\phi}}$$
 for $V(\phi) \propto exp(-\phi/\phi_{a})$

For left plot $\phi_{in}H_0 = 1.0$ and for right plot $\phi_{in}H_0 = 2.0$.

• = • < =</p>

Dependency of δ_m and δ_ϕ at z = 0 on $\phi_{in}H_0$

- Results for scale $\lambda_p = 1k \ Mpc$
- For fixed $\phi_{in}H_0$, $(\delta_m)_{expo} > (\delta_m)_{inverse}$.
- Whereas $(\delta_{\phi})_{expo} < (\delta_{\phi})_{inverse}$
- As $\phi_{in}H_0$ increases and $w_{\phi} \rightarrow -1$, $\delta_{\phi} \rightarrow 0$ and both models coincide.

🗇 🕨 🖌 🖻 🕨 🖌 🚍 🕨

Evolution of Linear Growth function $D_m^+ = \frac{\delta_m}{\delta_{m0}}$ for $V(\phi) \propto \phi^{-2}$

Evolution of D_m^+ at sub-Hubble scales (left panel) and super-Hubble scales (right panel) for $\phi_{in}H_0 = 1.0$ and $\Omega_{m0} = 0.285$.

Avinash Singh, IISER M, email-avin.phy@gmail.com

Evolution of Linear Growth function $D_m^+ = \frac{\delta_m}{\delta_{m0}}$ for $V(\phi) \propto exp(-\phi/\phi_a)$

Evolution of D_m^+ at sub-Hubble scales (left panel) and super-Hubble scales (right panel) for $\phi_{in}H_0 = 1.0$ and $\Omega_{m0} = 0.285$.

Avinash Singh, IISER M, email-avin.phy@gmail.com

Evolution of Linear Growth Rate

Evolution of linear growth rate $f = \frac{d \ln \delta_m}{d \ln a}$ for $\phi_{in}H_0 = 1.0$ at 50 Mpc (left panel) and 5000 Mpc (right panel).

Comparison between Theory and RSD Data

Here, $\sigma_8(z) = \sigma_8(z=0)\frac{\delta_m}{\delta_{m0}}$. Left panel is for $\phi_{in}H_0 = 0.8$ and right panel is for $\phi_{in}H_0 = 2.0$. Other parameters are taken to be the corresponding best fit values.

Constraints using RSD data: ACDM model

Constraints on $\Omega_{m0} - \sigma_8(0)$ for ΛCDM model. Black dot in represents the best fit value for Plank-2018.

Avinash Singh, IISER M, email-avin.phy@gmail.com Growth of Structure in Perturbed Tachyon Dark Energy Model

Constraints using RSD data: tachyon models

Plot on left and right are for exponential and inverse square potentials respectively. Here, we have fixed $\phi_{in}H_0 = 0.8$. Black dot in each plot represents the best fit value for Plank-2018.

Summery and Conclusions

• At fixed scale as $\phi_{in}H_0$ increases and $w_{\phi 0} \rightarrow -1$ dark energy become more and more homogeneous. • $\delta_{\phi} < 10^{-4} \delta_m$ at scales $\lambda_p < 10^3 \ Mpc$; dark energy can be considered homogeneous.

- At $\lambda_p > 10^3 \ Mpc \ \delta_{\phi}$ become significant.
- At $\lambda_p = 10^5 \ Mpc$, for $\phi_{in}H_0 = 0.8$ the ratio $(\delta_{\phi}/\delta_m)_{z=0} = 0.2645$ and 0.1060.
- If $w_{\phi 0} \neq -1$ then at Hubble and super-Hubble scales, δ_{ϕ} become significant.