Big Bang Nucleosynthesis simulations for ²H abundance predictions

Conrad Möckel

Helmholtz-Zentrum Dresden-Rossendorf Technische Universität Dresden

6th August 2019

Member of the Helmholtz Association

 Interplay of particle-/nuclear physics and general relativity

Member of the Helmholtz Association

< • • •

- Interplay of particle-/nuclear physics and general relativity
- Prediction of light isotope abundances (mainly D,⁴He and ⁷Li)

- Interplay of particle-/nuclear physics and general relativity
- Prediction of light isotope abundances (mainly D,⁴He and ⁷Li)
- Tool for probing our understanding of the early universe

Member of the Helmholtz Association

< ---->

Einstein's field equations:

$$\mathsf{R}_{\mu\nu} - \frac{1}{2} \frac{\mathsf{g}_{\mu\nu}}{\mathsf{R}} + \Lambda g_{\mu\nu} = 8\pi \mathsf{G}_{\mathsf{N}} \mathsf{T}_{\mu\nu}$$

Einstein's field equations:

$$R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R + \Lambda g_{\mu\nu} = 8\pi G_{\rm N} T_{\mu\nu}$$

Assumptions:

- Cosmological principle: spatial homogeneity and isotropy
- flat space time geometry without spatial curvature
- radiation dominated cosmos

1st Friedmann Equation:

$$H^{2} \equiv \frac{\dot{K}(t)}{K(t)} = \frac{8\pi}{3}G_{\rm N}\rho(t)$$

1st Friedmann Equation:

$$H^{2} \equiv \frac{\dot{K}(t)}{K(t)} = \frac{8\pi}{3}G_{\rm N}\rho(t)$$

• Entropy conservation $(sK^3 = s_0K_0^3) + \mu_e \ll 1$:

$$\frac{K_0 T_0}{KT} = \mathcal{S}(T)^{1/3} \Rightarrow K(T) = \frac{K_0 T_0}{T \mathcal{S}(T)^{1/3}}$$

Member of the Helmholtz Association

1st Friedmann Equation:

$$H^{2} \equiv \frac{\dot{K}(t)}{K(t)} = \frac{8\pi}{3}G_{\rm N}\rho(t)$$

• Entropy conservation $(sK^3 = s_0K_0^3) + \mu_e \ll 1$:

$$\frac{K_0 T_0}{KT} = \mathcal{S}(T)^{1/3} \Rightarrow K(T) = \frac{K_0 T_0}{T \mathcal{S}(T)^{1/3}}$$

 \rightarrow need to know $\rho(T)$.

Big Bang Nucleosynthesis II: Cosmology

Total energy density:

 $\rho = \rho_{\nu} + \rho_{\rm pl} + \rho_{\rm b} + \rho_{\rm cdm}$

Big Bang Nucleosynthesis II: Cosmology

■ Total energy density:

 $\rho = \rho_{\nu} + \rho_{\rm pl} + \rho_{\rm b} + \rho_{\rm cdm}$

Plasma densitiy

 $\rho_{\rm pl} = \mathcal{E}(T)\bar{\rho}_{\gamma}T^4$

Big Bang Nucleosynthesis II: Cosmology

Total energy density:

 $\rho = \rho_{\nu} + \rho_{\rm pl} + \rho_{\rm b} + \rho_{\rm cdm}$

Plasma densitiy

 $\rho_{\rm pl} = \mathcal{E}(T)\bar{\rho}_{\gamma}T^4$

Neutrino densitiy

$$\rho_{\nu} = N_{\nu} \frac{7}{8} \bar{\rho}_{\gamma} T^{4}$$

Total energy density:

 $\rho = \rho_{\nu} + \rho_{\rm pl} + \rho_{\rm b} + \rho_{\rm cdm}$

Plasma densitiy

 $\rho_{\rm pl} = \mathcal{E}(T)\bar{\rho}_{\gamma}T^4$

Neutrino densitiy

$$\rho_{\nu} = N_{\nu} \frac{7}{8} \bar{\rho}_{\gamma} T^4$$

(cold) Baryon density:

$$\rho_{\rm b} = n_{\rm b} m_{\rm b} = \left(\frac{\kappa_0}{\kappa}\right)^3 \rho_{\rm c} \Omega_{\rm b} h^2, \quad \frac{n_{\rm b} T}{\rho_{\gamma}} = \frac{\overline{n}_{\rm b}}{\overline{\rho}_{\gamma}} \propto \eta \ll 1$$

< ---->

BAO = Baryon Acoustic Oscillations

Observables:

aperture:
$$\Theta_{BAO} = r_d / D_M(z) = r_d / ((1 + z) \int_0^z dz' / H(z'))$$

redshift intervals: $\Delta z = H(z)r_d$

BAO = Baryon Acoustic Oscillations Observables:

> • aperture: $\Theta_{BAO} = r_d/D_M(z) = r_d/((1+z)\int_0^z dz'/H(z'))$ • redshift intervals: $\Delta z = H(z)r_d$

Sound horizon of baryon-photon-fluid:

$$r_{d} = \left(3\left(1 + \frac{3\omega_{b}}{4\Omega_{r}h^{2}}\right)\right)^{-1/2}\int_{z_{d}}^{\infty} dz \frac{1}{H(z)}$$

BAO = Baryon Acoustic Oscillations Observables:

> • aperture: $\Theta_{BAO} = r_d/D_M(z) = r_d/((1+z)\int_0^z dz'/H(z'))$ • redshift intervals: $\Delta z = H(z)r_d$

Sound horizon of baryon-photon-fluid:

$$r_d = \left(3\left(1 + \frac{3\omega_b}{4\Omega_r h^2}\right)\right)^{-1/2} \int_{z_d}^{\infty} dz \frac{1}{H(z)}$$

High redshift Hubble parameter:

 $H(z) \simeq H_0 \sqrt{\Omega_{\rm r}(1+z)^4 + \Omega_{\rm m}(1+z)^3}$

BAO = Baryon Acoustic Oscillations

i.e. Ly α BAO measurement (matter dominated universe):

$$\Theta_{BAO} \simeq \frac{1}{2(1+z)(1-1/\sqrt{1+z})} r_d H_0 \Omega_m^{1/2}$$

$$\Delta z \simeq (1+z)^{3/2} r_d H_0 \Omega_m^{1/2}$$

Member of the Helmholtz Association

BAO = Baryon Acoustic Oscillations

i.e. Ly α BAO measurement (matter dominated universe):

$$\Theta_{\text{BAO}} \simeq \frac{1}{2(1+z)(1-1/\sqrt{1+z})} r_d H_0 \Omega_m^{1/2}$$

$$\Delta z \simeq (1+z)^{3/2} r_d H_0 \Omega_m^{1/2}$$

.. can be broken by knowing $r_d \longrightarrow \omega_b$: BBN feature

BAO = Baryon Acoustic Oscillations

i.e. Ly α BAO measurement (matter dominated universe):

$$\Theta_{\text{BAO}} \simeq \frac{1}{2(1+z)(1-1/\sqrt{1+z})} r_d H_0 \Omega_m^{1/2}$$

$$\Delta z \simeq (1+z)^{3/2} r_d H_0 \Omega_m^{1/2}$$

... can be broken by knowing $r_d \longrightarrow \omega_b$: BBN feature $\Omega_m - H_0$ parameter space available

Big Bang Nucleosynthesis III: Nuclear Physics

Abundance evolution:

$$\frac{dY_i}{dt} = \sum_{jkl} N_i \left(\Gamma_{kl \to ij} \frac{Y_l^{N_l} Y_k^{N_k}}{N_l! N_k!} - \Gamma_{ij \to kl} \frac{Y_i^{N_l} Y_j^{N_j}}{N_l! N_j!} \right)$$

Member of the Helmholtz Association

< ---->

Big Bang Nucleosynthesis III: Nuclear Physics

Abundance evolution:

$$\frac{dY_i}{dt} = \sum_{jkl} N_i \left(\Gamma_{kl \to ij} \frac{Y_l^{N_l} Y_k^{N_k}}{N_l! N_k!} - \Gamma_{ij \to kl} \frac{Y_i^{N_i} Y_j^{N_j}}{N_i! N_j!} \right)$$

• abundances:
$$Y_i = \frac{n_i}{n_b}$$

Member of the Helmholtz Association

< ---->

Big Bang Nucleosynthesis III: Nuclear Physics

Abundance evolution:

$$\frac{dY_i}{dt} = \sum_{jkl} N_i \left(\Gamma_{kl \to ij} \frac{Y_l^{N_l} Y_k^{N_k}}{N_l! N_k!} - \Gamma_{ij \to kl} \frac{Y_i^{N_l} Y_j^{N_j}}{N_l! N_j!} \right)$$

• abundances:
$$Y_i = \frac{n_i}{n_b}$$

• reaction rates:
$$\Gamma_{ij} \propto \langle \sigma v \rangle = \sqrt{\frac{8}{T^3 \pi \mu_{ij}}} \int_0^\infty dEE \underbrace{\sigma(E)}_{\text{Felsenkeller}} e^{-\frac{E}{T}}$$

< ---->

$d(p,\gamma)^{3}$ He S Factor

< ---->

$d(p,\gamma)^{3}$ He Rate Evaluations

Member of the Helmholtz Association

< • • •

$d(p,\gamma)^{3}$ He Rate Evaluations

< • • •

BBN Simulation with PRIMAT¹: Parameters

¹ C. Pitrou, A. Coc, J.-P. Uzan and E. Vangioni, "Precision big bang nucleosynthesis with improved helium-4 predictions", Physics Reports **754** (2018).

• $N_{\nu} = 3$ • $N_{\text{eff},0} \approx 3.045$ (standard model value) • $\alpha_{\text{FS}} = \frac{e^2}{4\pi}$ • $\tau_n = (879.4 \pm 0.6) \text{ s} \text{ (PDG 2019)}$ • $\omega_{\text{b}} \equiv \Omega_{\text{b}} h^2 = 0.02237 \pm 0.00018$ • $N_{\text{eff}} = 2.98 \pm 0.17$

Planck 2018 TT, TE, EE+lowE+BAO+lensing data

BBN+CMB+primordial

abundances

HNISCHE

< ---->

- BBN+CMB+primordial abundances
- PDG 2018 recommended astronomical values:

Member of the Helmholtz Association

< ---->

- BBN+CMB+primordial abundances
- PDG 2018 recommended astronomical values:
 - ⁴He mass fraction:
 Y_p = (0.245 ± 0.003)

Member of the Helmholtz Association

< • • •

- BBN+CMB+primordial abundances
- PDG 2018 recommended astronomical values:
 - ⁴He mass fraction:
 Y_p = (0.245 ± 0.003)

$$\underline{D}_{H} = (2.569 \pm 0.027) \times 10^{-5}$$

Member of the Helmholtz Association

< • • •

- BBN+CMB+primordial abundances
- PDG 2018 recommended astronomical values:
 - ⁴He mass fraction:
 Y_p = (0.245 ± 0.003)

$$\underline{D}_{H} = (2.569 \pm 0.027) \times 10^{-5}$$

$$\frac{{}^{7}\text{Li}}{\text{H}} = (1.6 \pm 0.3) \times 10^{-10}$$

Member of the Helmholtz Association

< • • •

Concordance Plot: D/H

Conrad Möckel | Institute of Radiation Physics | http://www.hzdr.de

< • • •

Rate Variations: d(p, γ)³He

- $\delta_{d(p,\gamma)^3\text{He}}$: global rate factor
- Assumption: linear dependency

Rate Variations: Overview

Abundance sensitivity: $\frac{\Delta Y_i}{Y_i, \text{lit}} / \frac{\Delta \langle \sigma v \rangle}{\langle \sigma v \rangle}$								
	Reaction	D/H	Yp	⁷ Li/H				
	d(p, $\gamma)^3$ He	-0.32	0	1.82				
	d(d,n) ³ He	-0.64	0	2.26				
	d(d,p)t	-0.50	0	0.16				
	$t(d,n)lpha t(lpha,\gamma)^7Li$		0	-0.09				
			0	0.08				
	³ He(n,p)t	0.03	0	-0.93				
	3 He(d,p) $lpha$	-0.02	0	-2.73				
	3 He $(lpha,\gamma)^{7}$ Be	0	0	3.15				
7 Li(p, α) α		0	0	-0.22				
	⁷ Be(n,p) ⁷ Li	0	0	-2.49				

< D >

Parameter Variations: Overview

• Abundance sensitivity: $\frac{\Delta Y_i}{Y_{i,\text{lit}}} / \frac{\Delta P}{P_{\text{lit}}}$

Parameter	D/H	Yp	³ He/ ⁴ He	⁷ Li/H
$\omega_{ m b}$	-1.776	0.039	-0.650	7.090
$N_{\rm eff}$	0.411	0.170	-0.090	-0.985
$ au_n$	0.401	0.727	-0.829	1.516
α_{FS}	-0.011	0	0.008	0.085

Member of the Helmholtz Association

< D >

$\mathbf{D}/\mathbf{H}(\omega_{\mathbf{b}}, N_{\mathbf{eff}})$

< • • •

Two Parameter Variations: $N_{\text{eff}}(\omega_{\mathbf{b}})$

- dpg: Iliadis 2016
- ddn: Gomez 2017 / Pisanti 2007
- ddp: Gomez 2017 / Pisanti 2007

< D >

Two Parameter Variations: $N_{\text{eff}}(\omega_{\mathbf{b}})$

- dpg: NACRE 2013
- ddn: Gomez 2017 / Pisanti 2007
- ddp: Gomez 2017 / Pisanti 2007

Two Parameter Variations: $N_{\text{eff}}(\omega_{\mathbf{b}})$

- dpg: Adelberger 2011
- ddn: Gomez 2017 / Pisanti 2007
- ddp: Gomez 2017 / Pisanti 2007

Two Parameter Variations: $N_{\text{eff}}(\omega_{\mathbf{b}})$

- dpg: Hammer 2019
- ddn: Gomez 2017 / Pisanti 2007
- ddp: Gomez 2017 / Pisanti 2007

•••

Two Parameter Variations: $N_{\text{eff}}(\omega_{\mathbf{b}}) \longrightarrow G_{\mathbf{N}}$

Two Parameter Variations: $\alpha_{FS}(\omega_b)$

Cooke 2015: primordial $\frac{^{3}\text{He}+\text{T}}{^{4}\text{He}}$ = (1.23 \pm 0.02) \times 10 $^{-4}$

Following Nollett et al. 2002;

Influence on Q value and coulomb barrier of reaction

Based on NACRE 2013 + Pisanti 2007:

$$Y_{p} + \frac{{}^{3}\text{He}+\text{T}}{{}^{4}\text{He}}:$$

$$\omega_{b} = 0.0227 \pm 0.00034$$

$$\underline{\Delta\alpha}_{\alpha_{0}} = (0.001 \pm 0.023)$$

Two Parameter Variations: $\tau_n(\omega_b)$

BBN + BAO Constraints on H_0

CosmoMC evaluation of Galaxy + Ly α BAO data with BBN ω_b gaussian prior (following Addison et al. 2018):

 $\frac{\omega_{\rm b} = 0.0200 \pm 0.0005:}{\Omega_{\rm m} = 0.314 \pm 0.024}$

•
$$H_0 = 66.8 \pm 1.4 \,\mathrm{km \, s^{-1} \, Mpc^{-1}}$$

$$\omega_{\rm b} = 0.0223 \pm 0.0005$$
:

$$\Omega_{\rm m} = 0.314 \pm 0.025$$

•
$$H_0 = 68.6 \pm 1.6 \,\mathrm{km \, s^{-1} \, Mpc^{-1}}$$

Member of the Helmholtz Association

< D >

BBN + BAO Constraints on H_0

CosmoMC evaluation of Galaxy + Ly α BAO and DES 1Y data with BBN ω_b gaussian prior (following Addison et al. 2018):

$$\begin{split} \underline{\omega_{b}} &= 0.0223 \pm 0.0005; \\ \bullet \ \Omega_{m} &= 0.294 \pm 0.016 \\ \bullet \ H_{0} &= 67.7 \pm 1.1 \, \mathrm{km \, s^{-1} \, Mpc^{-1}} \\ \underline{\mathrm{Riess \ et \ al. \ 2019;}} \\ H_{0} &= 74.03 \pm 1.42 \, \mathrm{km \, s^{-1} \, Mpc^{-1}} \\ \underline{\mathrm{ACDM \ Planck \ 2018;}} \\ H_{0} &= 67.4 \pm 0.5 \, \mathrm{km \, s^{-1} \, Mpc^{-1}} \end{split}$$

Member of the Helmholtz Association

< D >

Conclusion

- Good agreement between BBN and CMB for Adelberger 2011 $d(p,\gamma)^{3}$ He and Pisanti 2007 $d(d,n)^{3}$ He and d(d,p)t
- α_{FS} seems to be unaltered in BBN era, however $\frac{^{3}He+T}{^{4}He}$ abundance is unconventional
- τ_n is not well constrained by BBN
- Constraint on H₀ from BAO+BBN in good agreement with ΛCDM Planck 2018 but 3.5σ tension to Riess et al. 2019 using inverse distance ladder
- New insights on the d(p,γ)³He S-factor from LUNA (Klaus Stöckel et al.) will follow!

