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Motivations for massive gravity

Cosmic acceleration = dark energy problem.
o either A-term, very natural phenomenologically,
Guw=rtTw — Guw +Nguw = kT

but unnatural from the QFT viewpoint

e or modification of gravity (many options). Massive gravity:

1 1
Newton = —  Yukawa =—e "
r r

m ~ 1/(Hubble radius) ~ 10733 eV. If r < Hubble, then
Yukawa=Newton, usual physics. Screening for r > Hubble =
gravity is weaker at large distance = cosmic acceleration.

o From QFT viewpoint small m is more natural (multiplicative
renormalization) than small A (additive renormalization).



Fierz-Pauli theory
VdVZ discontinuity
Non-linear Fierz-Pauli
Vainshtein mechanism

Hamiltonian analysis and the Bouleware-Deser ghost
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@ Ghost-free massive gravities
@ Properties of the dRGT potential
o Bigravity

@ Cosmologies and black holes

o Energy and superluminality

°
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Fierz-Pauli massive gravity



Linear massless gravitons — linearized GR

L= i R\/—g& + Lmatter /k = 871G, signature (—+ ++) /

If g = M + hyu then /check this/

]' (0% o (63
— 2{ Oh — 0,0%hay, — 9,0%hays + 1, (070% hag — Oh) + awh}
1
= _E(Dh#V +...)= kT
so that
(Oh + ... = —26Ty

Gauge invariance hy, — hy, + 0,6, + 0§, does not change the
l.h.s. = Bianchi identities

0=0"(DOhy+...) = 0"Tw=0



Gauge invariance hy,, — hy, + 0,6, + 0,&, implies that one can
impose gauge conditions. With h,,, = h,,, — gnm, one requires

0"h,, =0 4 gauge conditions
and the equations reduce to
Ohy = —26T,,

Residual gauge freedom with [1§,, = 0 = one can impose 4 more
conditions = 2 =10 -4 — 4 DoF. If T, =0

h:O, hokZO = hooZO, 8,-h,-k:0

the solution is

hw/(t, Z) - eik(tfz)
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Quadratic action

The equations can be obtained from S = [ £ d*x with

1 1
L= Lot hu T

with

1
Lo = quadratic part of {2 R\/—g}

1 1 1
= Z (—2 8ah,uy8ahwj + 6,Lbhl/aayhua - 8ﬂhuyal’h + 5 8#”8“/7)

which is invariant under diffeomorphisms
EO(huu + aﬂfv + &/fu) = EO(huy)

The matter term is also invariant since 9, T#” = 0.



Linear massive gravitons — Fierz and Pauli /1939/

O¢ =0 = O¢ = m?¢.  Similarly for gravitons /h = n*"h,, /
Ohyp + ... = m2(h/“, —ahnu) — 26Ty,

=> no gauge invariance anymore. Taking the divergence gives 4
constraints
m*(0" by, — adyh) =0

Taking the trace and using the 4 constraints gives
2(a —1)0h = m*(1 —4a) h—2xT

= for &« = 1 one gets the fifth constraint

= 10 — 5 = 5 DoF=graviton polarizations.



The FP equations can be obtained from S = ICFPd4X with

1 1
Lep = (Lo — m?U) + 3 b, T

where the kinetic term is the same as in GR,

1 1 1
L= 5 (-2 Oa by 0 W + 0o W = WD, h + %h@"h)

while the mass term
1 uv 2
U= 3 (hu,,h —h )

breaks the diff. invariance.



Ohyw  —  9,0%haw — 8,0%hay + 1, (0%0° hag — Oh)
+ Ouwh=m*(huw — hnw) — 26T,

are equivalent to

Ohpy — Owh = m?(h — hnuw) — 26Ty

by = Oh
2K
h = =32

They describe free massive gravitons in flat space. Each graviton
has 5 degrees of freedom = 5 spin polarizations.

Theory is NOT invariant under hy,, — hy, + 0,6 + 0,€,



Free massive gravitons

If T, =0 then
Ohy = m*(hu — hnw)
Ohy = h=0
the solution is, with w = vV'k2 + m?,
0 O 0 0
_ 0 Dy Dy 0 i(wt—kz)
hl“’(t’ Z) - 0 D>< _D+ 0 €
0 O 0 0
0O Vi W O 25 0 0 O
Vi 0 0 0] i(wt—ke) 0 =5 0 O iwtke)
T lw o o of® Tlo o -s of®
0O 0 0 O 0 0 0 O

Contribution of vectors and scalar to the GW170817 signal is less
than 0.1%. Taking m — 0, tensor modes become massless
gravitons. Vectors and scalars can probably be set to zero.



Veltman-van Dam-Zakharov (VdVZ)
discontinuity



VdVZ discontinuity /1970/

If T, # 0 then the FP equations are

Ohp + ... = m*(hy — hnw) — 26T
Mhy = Oyh
2K
h = ——
3m?

The m — 0 limit is apparently singular. How to take it 7

Introducing the Stueckelberg fields x,., A, and ¢ one
decomposes h,,,, into tensor, vector, and the scalar parts as



VdVZ, limit — 0

1 1
h,ul/ = X,LLV + E (8#Ay + 81/A#) + W 8“61/ ¢

This is invariant under the local

X = Xuv + Ouby + 00y Ay — Ay — méy,
Ay = A +0V  pd—mY

Setting X = hyy + (6/2) 1 and taking the m — 0 limit gives

UOhy +... = —2xT,, tensor modes
0M(0,A, —0,A) = 0 vector modes
2
o = il scalar mode

3

Vector modes decouple. Scalar rests coupled the matter =
additional attractive field (5th force) = wrong Newton law but
correct light bending. One can rescale k = correct Newton law
but wrong light bending.



VdVZ — two source interaction

The tree amplitude of interaction of two matter sources is
A1z = KT Pap T3

One has in the FP theory

Puvap = Wab’ Z &ue aﬂ p2 m2’
while in GR
Puvas = ;waﬁ Zeﬁw a2 p2
If m — then
P;waﬂ pGR R 4 Uu;naﬂ + ...

extra term gives an extra attraction due to the scalar graviton
coupled to T.

FP does not agree with GR, however small m is.



VdVZ solution

Scalar graviton mode can propagate in the spherically-symmetric
sector

ds? = —e" R dt? + AR dR? + R2dQ? ()
Let R — R(r) = reu(r)/2 then

ds?> = —e’(Ndt? + IR (r)dr? + rPetN dQ? (%%)

@ In GR metrics () and (**) are equivalent and ( is a pure
gauge parameter, one can set ;4 = 0 by changing back
r— r(R).

@ In FP there is no invariance, (x) and (xx) are NOT equivalent,
wu(r) is not a pure gauge but describes the scalar graviton.

o Linearizing (x*) gives
hoo = v, hy = —X—(rp), hgs = —rp, hy, = —r2psin® ¥

The FP equations



1, 1. m ,
1 1 5 v
YR = e y)
/
2V Ay
m(2 o) = 0 (1)

For m = 0 one gets the GR solution (p is arbitrary = pure guge)

rg  26M —
A

For m # 0 this does not pass through (1), one finds instead




VdVZ potential

2C C
v = ——e ™, A=—Q+mr)e™™
r r
L+mr+(mr)®2 _, .
e

m2r3

p = C

In the near zone, for r < 1/m, this reduces to the VdVZ solution

B T S S |
o or’ M_r(mr)2 r3

therefore

= depending on choice of C either the Newton law is wrong or the
light bending is wrong.

Does this rule out the massive gravity 7
No, there is a remedy at the non-linear level.



Non-linear Fierz-Pauli —
the bimetric theory



Non-linear FP
S = i/Jjg <; R(g) — m* U(g, f)) d*x + Smat

where U is a scalar function of g;,,. One cannot construct a scalar

using only g,,,. However, if there is a second fixed non-dynamical

reference metric f,, = 1), then one defines

S=1-g7'f =  S=0—g"f,

and then one can choose any function (infinitely many options)
U= U([S][57], [87], det S).

In the weak field limit g, = f,,, + hy and S, = hyy + ... The
correct FP limit for small S is achieved if

_ 1 /e 812 3
U_g([S]—[S] )+ 0
One can allow for diffeomorphisms by setting
fw = 140,970, 8

where ®A are Stueckelberg scalars.



One can define two energy-momentum tensors

ou ou
T,uy = 2@ — Uguy7 7;” = 28TW — Ufuy,

the equations are
Gw = m Ty = VT, =0
The diff. invariance of U implies the identity
V=8 VT ——10"T,, =0
and therefore one has on-shell

0T =0



Theory of Ogievetsky-Polubarinov /1965/

1 1
S= K/\/—g <2 R(g) — m* U(é;'ﬂi)) d*x
the primary object is the graviton field h*” defining the metric

(V2)" @y =we e

the equations

G = m? Tw = Uhy= mzhu,, + non-linear terms
"Tw =0 = 0"hyy = X0y h

the OP potential, with S, = g"71,,,

which gives A = —s/(2n).



VdVZ and Vainshtein mechanism



Vainshtein /1972/

Let us consider a non-linear FP

1 1 m? s ) .
S=— [ (3R~ 5 (8%5% (5% ) V-8 d*x + Sum

K

with K = 6, — g"“n,, and consider a spherically symmetric
metric
ds? = e"(Ndt? — MIR2dr? — R2d02

with R = re/2 and compute non-linear corrections to the VdVZ.
At large r, one looks for solutions of G, = m?T,, in the form

v(r) = K"wa(r),  Ar) =Y &"Aa(r),  p(r) =) " pa(r).

n>1 n>1 n>1

the n =1 terms being the VdVZ solution



Large r solution

2rg rg
v = 7T<1+C1m4r5+”')
_ g Ie
)\ = 7(1+C2m4r5+...)
_ Ig I'e
po= m2r3 (1+C3 m4r5+”')

Leading terms are the VdVZ solution. For m ~ (10%°cm)~1! the
next-to-leading terms are ~ ry/(m*r®) ~ 1032 at the edge of solar
system. They become small only for

r>ry = (rg/m“)l/5 ~ 100 Kps

The VdVZ problem therefore arises only for r > ry.



Small r solution

v(r) = m*va(r), Mr)=) m*"An(r), nul(r) = m* ua(r),

n>0 n>0 n>0

it is assumed that g, Ag are small, their equations are linearized,
while g is not small and its equation is fully non-linear. For
r > rg one finds

v = —r'rg’r<1—|—al(mr)2 r/rg+...>
A = r‘rg<1+az(mr)2 r/rg+...>

pno= \/%<1+ag;(mr)2 r/rg+...>

so v, A show the GR behavior. Corrections are small for r < ry =
one recovers GR in the non-linear regime.



Vainshtein scenario

@ The VdVZ discontinuity is only visible in the linear regime, for

1/5
r> oy = (%) ~ 100Kps

@ For r < ry the scalar graviton is frozen by non-linear effects
and does not propagate = GR is recovered.

o For r ~ ry there is a transition between the two regimes.

The VdVZ problem is cured by the non-linear effects.
This restores GR.



A model for Vainshtein

2
S= / <; R— ’%( UBKE, — (icaa)2)> V=8 d*x + Siat

KR

KCH = 61 — ghof,, fi = 1ag0,®"0,dB

In static, spherically symmetric case

guadx!'dx” = —e"(Nde? + N dr? + r2d0?
fdxtdx” = —dt? + dR?* + R?dQ?
R(r) = ret/2  Stuckelberg field

One looks for an asymptotically flat solution describing a localized
object (star). Field equations

2 t
Gy = M Ty + KT

ou . .
T =275 —gutl, T/, = diagl~p. P.P.P]



HY = diag [1 —eV,1—e?R?1—e"1— e"}

TH = S0 S((1— HY(HE — [H]) + [H?]  /no sum over i, v/

v 8

4 independent field equations determine v, A, u, P

1 N 1
-
G(()) = € <r2—r>—r2_m2Tg—/€p

1 ! 1
G = e <+V>—2:m2T[+mP

2 r r
(T7)Y = —V—/(Tr T+ E(Tﬁ — T / tion of
= S (T 5 ~(Ty ! conservation o
/
p— —%(P—i—p) /conservation of

while p(r) = p,©(r,. — r) = star of radius r, and density p,.

Field equations

T/

mat
TW






o Free massive gravitons are described by the linear Fierz-Pauli
theory.

@ This theory gives different from GR predictions in the m — 0
limit due to the additional attraction mediated by the scalar
graviton (VdVZ problem).

@ In non-linear generalizations of the FP theory the scalar
graviton is strongly bound by non-linear effects within the

Vainshtein radius
( rg )1/5
rv =(—=
v vy

This pushes the VdVZ effect to the region r > ry and
restores GR for r < ry.

@ As a result, theories with massive gravitons can agree with
observations.



Boulware-Deser problem:
non-linear effects bring back the
ghost = sixth DoF.



Fierz and Pauli with 6 DoF

Ohpy + oo = m?* (b — ahn) — 26Ty
Taking the divergence gives 4 constraints
m?(0" hy,, — adyh) =0
Taking the trace gives
2(a —1)0h = m*(1 —4a) h—2xT
= for & = 1 one gets the fifth constraint

2Kk
h=—-——
3m?
= 10 — 5 = 5 DoF=graviton polarizations.
If &« # 1 = there are 6 DoF. The additional mode is a ghost: its
kinetic energy is negative.



Sixth DoF

Let o # 1. One can always decompose h,,, as
h/u/ = '¢;w + 8,u§z/ + arzfu + a;w¢ = h=v¢+0¢
where 0H1),,, = 01§, = 0. The last FP equation

20 —1)0Oh=m*(1 —4a)h—2kT

then gives | (12¢) 4 ... = 0|, the corresponding term in the action

O8) = X065 ¥ /x =20/
= (61— @)1+ 62) — 3 (61— 60’
= ¢1l0g1—¢ollgo — % (61— ¢2)°

The minus sign = negative kinetic energy = Ostrogradsky ghost.



Boulware-Deser problem /1972/

The ghost can be removed in the linear FP theory by choosing
« = 1. However, it comes back in the non-linear FP. Therefore the
latter make no sense.

This stopped all developments of massive gravity for almost 40
years.



Hamiltonian formulation

Ihe Lagrangian
1 2
L=(zR—mU]|+\/—g

after the ADM decomposition

ds? = —N?dt? + yu(dx' + N'dt)(dx* + N*dt)
ds? = —dt? 4 dpdx’dxk
becomes

1 .
L= 5\va (KikK’k — K%+ R(3))—m2V(N“,7,-k)+totaI derivative

where V = /4 NU and the second fundamental form

1

Ky = —
kK~ oN

("Yik - VE3)Nk - Vf) Ni>

Variables are v, and N* = (N, N¥).



Hamiltonian

Conjugate momenta

; ; oL :
V(K& — Ky, PN, = =0/ constraints

k0L 1
aN"

T 0 2

= NY are non-dynamical = phase space is spanned by 12
variables (7%, ~;) = 6 DoF. Hamiltonian

H = n*4u — £ = NFH, (7%, yi) + m*V(N*, vix)

with
Ho = 1 (2myr™ — (mf)%) - : \FYR(:” Hi = —2v®x]
NoA ) 2 ’ P

Secondary constrints

oH

) 8V(N“ ’y,-k)
2 9
_PNM = 79‘/\/'“ = m ——F

ane 0

Hu(ﬂik> 'Yik) +



Degrees of freedom, =0

OH 2 OV(N*, vix)

N o 0 )

= H, (7™, yi) +
o If m =0 this gives 4 constraints
Hu(ﬂikﬁik) =0
They are first class
{HuHo} ~Ha

and generate gauge symmetries, one can impose 4 gauge
conditions, there remain 4 independent phase space variables

12—4—-4=4=2x(2DoF) = 2 graviton polarizations

Energy vanishes on the constraint surface (up to a surface

term)
H=N'H, =0



Degrees of freedom, #0

B oA
OH 2V )

_ ik ..
W - Hu(ﬂ- )’71/() + ONH

o If m # 0 this gives 4 equations for laps and shifts whose
solution is N#(7' ~vi). No constraints arise = there are

12 = 2 x (6 degrees of freedom)
Inserting N* = N*(7' ~;) back to the Hamiltonian
H = NFH, + m*V(N*, vix)

yields H(m™*, ~;) whose kinetic energy part is not
positive-definite = the energy is unbounded from below. This
is related to the sixth DoF=ghost. The ghost is removed on
flat background by choosing o = 1, but it comes back on
arbitrary background.

In non-linear Fierz-Pauli theory the VdVZ is cured but the
ghost comes back /Boulware-Deser 1972/



Ghost-free massive gravity



Ghost-free massive gravity /2010/

One has

87‘[ i 3V N“,’Yi

oNE — Hu(m K i) + mz(aNN k) =0 (%)
with

V(N*,vik) = %\/ -8 ([HZ] — [H]2) + higher order terms

One can choose the higher order terms such that

PV(N", vi)\
rank (mvmvu) =3

= the 4 equations (x) determine only 3 shifts Nk = Nk(7k ~;),
the lapse N remains undetermined, the 4-th equation reduces to a
constraint

C(x* y)=0 = C={C,H}=S=0.

The two constraints C, S remove one DoF, there remain 5.



dRGT theory

Explicitely

S= MI%I/ (; R — m2u> V—gd*x

u_b0+ble +bgz)\ \p + b3 Z MadpAe + bado A1 Ao )s

a<b a<b<c

where by are parameters and ), are eigenvalues of the matrix

v = V&'

/de Rham, Gabadadze, Tolley 2010/



A different parameter choice
S= Ml%l/ (; R — m? u) V—gd*x

U—CO+CIZ>\ +C2Z>\ Ap + 3 Z AaApAc + Ao A1 A2 A3

a<b a<b<c
where \, are eigenvalues of | K¥, = 65 — \/grfy,
Flat space is a solution if cg = ¢ =0, ¢; = —1/2 then

u = (K- KP)
b 2(KP - 3HIKP) + 20K

In the simplest case 3 = ¢4 =0 =

U = (K% - [KP)



Theory cutoff
S= MI%I/ G R — m2L{> V—gd*x

1
U= (HEH = (HZ) +

HE =68 — ghf,,  f, = 1030,0%0,0°

Let

laAa 1

1
v = nuy+mhuy 8p¢a = 53“‘ mMP] “w 2/\/]1%1 0, 8a¢

then expanding the kinetic term (similarly for g, = ggy + Miplh/“,)

2
I\/lp1 R+/— (—aahwaahuur,..) + M—O(hs)
Pl

classical part quantum corrections

Quantum corrections become important only for E ~ Mpj.



Raising the cutoff

Expanding the potential gives (if A, = 0)

m* MEU/~g = (9¢)?
1 2 1\2 L 2 1\2
s (er ) o g (o )+

quantum corrections

+

The quantum corrections become important when E ~ As where
the lowest cutoff scale is

As = (Mpym*)Y/® ~ 1/(10' km)

One can adjust the higher order terms in U such that all terms
suppressed by As are total derivatives and vanish upon integration.
The rest sums up to Ugragr. This raises the cutoff to

Az = (Mpim?)Y3 ~ 1/(10%km)

=> reliable predictions within Solar System.



Galileons in the decoupling limit: Mp; — o0, = — 0,

A3 = (Mp, )Y3=const.

1 1
0 A+ 0,,0%
mMpl K 2/\/11231 d)

1
Euv = nuy+mhuy 5u¢a = 63+

with h, = h,, + a1 ¢nu, + a2 0,00, ¢ one obtains (if A, = 0)

n 9
L1y = Lo(hyu +Z 3(n 2) Eg;a)d[ﬁf’]‘F h“ X(3)
n=2 3

where the Galileon terms (shift inv. ¢ — ¢ + ¢o) /M, = O/

£® = (99),

£® = (9¢)’[N],

LW = (9¢)*(IN)? - [N?)),

£® = (9¢)*(IN)° - 3[M)[M?] + 3[N°])

X3 = (NP =3MM24+3(MP]) 0~ 3((MIN —20MN2, [N, +2173, )



Galileon model of Vainshtein screening

let T =—4rMs®)(F) = —Még)

o L (SN _M
r N3\ r 3

then

The Vainshtein radius is | ry = MY/3 /A

M
-5 — & ¢ —_ —5 = Newton force
r3/2 Al ~~ r
\ r&ry r>ry

for r < ry the force ratio

_— = | — 1
Newton force < ry ) <

= scalar graviton is screened at small distances.



Other massive gravities with 5 DoF

To have 5 DoF one needs constraints which arise if in

oH i OV(N", ik
one has 82V(N )
“vik)\
det <8NM8NV > =0

This is the Monge-Ampere equation, all its solutions have been
studied. Only the dRGT choice is Lorentz-invariant. Other
solutions define theories which reduce in the weak field not to
Fierz-Pauli

U = (1/8)(huh — (h4)?)
but to a non-Lorentz-invariant potential
U= (1/8)(ah3y+ bh3, + chy +d h2, + e hoohok + . ..)

which could be relevant in cosmology. They have a higher cutoff

/\2 =\ mMPl ~ 1/(1mm)



("]

Non-linear Fierz-Pauli models generically propagate 5+1 DoF,
the extra DoF being the BD ghost rendering the theory
unstable. For almost 40 years this was considered to be an
inevitable obstacle.

However, a careful analysis by dRGT has shown that there is a
unique (up to 5 free parameters) way to choose the potential
U such that a constraints arise in the Hamiltonian
formulation. The constraints remove one DoF. The resulting
theory propagates 5 DoF and is called ghost-free.

The dRGT theory is valid up to the energies of the order

A3 = (Mpym?)}/3 ~ 1/(103km), so that it can be used to
make predictions within Solar System.

In the decoupling limit, Mp; — oo, m — 0, fixed A3, the
theory describes linear gravitons interacting with non-linear
vector and scalar. The scalar part describes the scalar
graviton polarization and has the Galileon structure.

The theory cutoff can be raised even higher, up to

A2 = V/Mpym ~ 1/mm), via braking the Lorentz invariance.



Properties of the dRGT potential



Properties of the dRGT potential

S= I\/IF%I/ @ R —m? u) V—gd*x
with
4
U= bllv)
k=0

where Ui (7y) are symmetric polynomials of eigenvalues A, of

'7“1/ =V g,uafay
which means that
VMafya/B = guafoa/
or
;5/2 _ g_—lf‘



Uo(7) = 1
thr) = 2 re=Dl

U(vy) = Z)‘a)‘b = %([7]2 . [72])
a<b

() = 3 Aadwde = (0~ 30I0P) +21%)

a<b<c

Us(7) = NoArheds

= %@m—ﬁfMﬁ+&ﬂwhghm_q¢”



Varying the action
S = M3 / (; R — m? Z bkuk(7)> v—gd*x
k

To vary this with respect to g, one uses 42 =

g——lf hence

099 + 405 = 0g '
This is the matrix Sylvestre equation for §% whose solution is

extremely complex. Fortunately, Uy depend only on [y"] = [7"].
One has

2 1an

0 +A045 =08 M AT =08 EA
and taking the trace

08" Yap

N

R TS A 1
5[7] = 5[6g lg’)’] or (5’yaa = 5 5g“aga18fyﬁu =
Similarly,

n n n 1 n
(V") % = 5 08" 8ap(1")' = 5 98" (Y ")as

/check this !/

One has ‘ (M = (V"o



Field equations

lej = fn2 THV
with
T, =gl Te =7h, —UY

where

™ = {bilUy + byUy + bslUy + by Uz} 7",
{ballo + b3y + by} ()",
+ {bsUo + balhs} (V3)",
— {bsllo} (*),



Equivalent form

Consider the characteristic polynomial

(A = det(&—xf)z(xo— N1 =) (A2 = A)(As =)
= A3ZA FAD XA = A D AaApAc + Aodi o)z

a<b a<b<c

= MOA4—U1)\3+Z/{2/\2—243)\+L{4

The Hamilton-Caly theorem tells that

£(3) =UoA* —Uh A3 + U A2 —Us A + Uy =0
therefore

T’fj = {b1Uo+b2U1+b3U2}’7”l,
{b2Ulo + b3t} ()",
+ {bslo} (v*),
+ {bsUs} 6", = o, + by Usd*,



Field equations — simplified form

GH = m’Th,
with

3
TH = ot — (Z bkuk> o
k=0
where
ot = {b1U0+b2U1+b3U2}’)/‘ul,

{balho + b3l } (2",
+ {bstho} (v*)",



One more representation of U

1 g
Z/{O(’y) e E ENVPO'E#VP
1 14
Ui(y) = 31 €uvpo€™ 7,
1 aBpo p v
Ua(vy) = 221 €uvpo€ YoV B
1 ag
Us(y) = 31 E,tu/,oaﬁoéﬁ’y ’7“0/71/5’7’)7
1 14
Us(v) = a 6”1//)0604[3757”&7 3%
assuming that egio3 = €923 = 1.



Tetrad formulation

Let us introduce two tetrads e;’ and fj such that

b b
gl“’ = nabeaue v f,uzz = nabfifu

Let e abd f} be the inverse tetrads, so that

ab ab
g =n"e,l'e)” I =R
. _ a
and define and also
b _
T = 8ual ) = nave’, e e 1, = nace’®,f, = €%, fa
5b

c

Let us assume that

then

4%, = e 'fae, P = efine, 5 = eMfhae, o = ghf,,

= M, =" = Vg'fu




Useful identities

1
d _
Eﬁabcde“”o"ge eb e w€s = | |=e=\—¢g
1
a €abc dﬁ'u ﬁeb e edﬁ = e eau
1
a7 6abcdewjaﬁe e g = e(ea'ueb — €&, € )
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Yet one more representation of L

1

Uo(7)V—g = 7 €abcge P e? ue e€ edﬁ —e=\—g
1

Uh)vV-g = geabcde“”aﬂe b e fh =ee/fd = erﬁ = e[
1

Z/lz('-)/)\/% = ﬁ eadeeuyaﬁeaMebyffxf%

_ ! e(ecaedﬁ e eM)fS, f,g =e5 ([F]2 [r?)

2
1 14e% a C a —
Us(V)vV—g = g‘fabcdeu Pe ,ufgfafd - ‘fa#|e ufa'u =f[r 1]
1
Us(V)vV—g = Eeabcde“”aﬁfo’;fgf =f

Here (T1)", = f,"e?, where £," is the inverse of f2,.

These expressions are equivalent to the previous ones provided that

', = ~", which is the case if .



Field equations — tetrad form

Varying with respect to e, gives

2
G =m-" Ty

with
T;w = _bO Buv + bl {r,uzl - [r] g,uu}
f _ _ _
+ b (M) — M)
f
— “(r Y.,
bs e( )u
where

TR P G WO N R (e PO A L L

Since T,, = T,, this generically implies that [, =T, = .
Therefore the tetrad formulation is generically equivalent to the
square root formulation.

For special values of by one can have T,, = T,, but ', AT,



Form formalism

_|_

+

1
I\/IFZ,I/ (2 R — m2L{> V—gd*x

1
/ {4€adeRab A e A ed

b
M €aped (4? e? Nel nef e

by a b c d by a b c d
ﬁe ANe’ Ne“ AFf —i-ﬁe ANe’NFENTF
g?ea/\fbAf‘-‘/\fdJrZ‘I‘fa/\fb/\fc/\fd>}

with e? = e"”udx“ and f? = f‘de”. In the ADM formulation

ds? = —N?dt>+y (dx'+N'dt)(dx*+ N*dt) = —e®@e’+je @e*

= N enters only e = Ndt. The potential is linear in € = it is
liner in N so that V =U+/—g = AN + B = constraints=5 DoF.



Dimensional reconstruction

Sunr = 5 My [ (R+ (K ~ () v=gatx, K =1-Vg 77

1
S5 = 2M§/R5\/g5d5x =  5DoF

dsg = dy® + g dxdx” = dt* + napede]

S5= M2 [ dy [(R@)+ KT - [K3)v=gd*
1 1

K = 5 Oy = 5 nab(f)yefLeS + e, ye,‘j)
e;(y2) —e;(y1)
el =ei(y1), fi=en(n), |de, - -———F =m(e] —f;)
Y2—n
K — —m (guv —nabejfl,a), Kl'— —m (08 — el'f) )= —mKH,
—

Verfay



Bigravity



S = L R(g)\/—gd4x+l/R(f)\/—fd4x
2K1 2K

m2

K1+ K2

/u\/ _gd4X + Smﬂt[g? \Ug] + Smat[fa wf]
with the same potential as before

U—bo-i—blZ)\ +b22)\ Ap + b3 Z AaApAc + baAgA1 Ao \3

a<b a<b<c

There is interchange symmetry
8uv f/“, R1 <> K2 bk — b4_k T;Ill,at(g) e Tﬁll,at(f)
7 DoF = one massive + one massless graviton

/Hassan and Rosen 2012/



Field equations

G/u/(g) = m2 C052 n T/LV(g7 f) + K1 T;ryljat(g)
Gu(f) = m*sin® n T (g, ) + k2 T (F)

with tan?n = ko /K1 and

TH = ghTo, =, — U

TH = fro,, = V8

with

™ = {bilUy + boUy + b3ls + baUs} 7,
{bolUo + b3y + balr} (7?)",
+ {bslUo + bslhr} (v3)",
— {balUo} (v*)",

In the limit where k> — 0 and f,, — 7, the theory reduces to the
dRGT massive gravity = dRGT is contained in the bigravity.



Flat space

Let us require the flat space gy, = f,, = 1, to be a solution.
This imposes two conditions 7, = 0, 7., = 0. Requiring in
addition m to be the FP mass of gravitons in flat space gives a
third condition. These three conditions are fulfilled by adjusting
the 5 by's as bi(cs, ¢q)

bp = 4c3+c4—6, by=3—-3c3—¢c3, br=2c3+cs—1

bs = —(a3+a@), bi=c
Small fluctuations g, = M + 68u and ., = 1 + 0f

hy,, = cosn g +sinn df, h’, = cosn &fy, — sinndgu,

L
fulfill
@+..)m, = m2(hlrf,/—hmnw,)
0 _
O+..)H, = 0



Cosmologies and black holes

@ Proportional solutions
@ Non-bidiagonal solutions

@ Hairy solutions



|. Proportional solutions



Proportional solutions

i = C?gu | = GH(g)+Ng(C)3E =0, GL(F)+As(C)3 =0

where, with Py, = by + 2bmy1 C + by C2,

o2
sin
Ng = m?cos®n (P + CP1), Af = m? C3n

(Pl + CPQ)

/show this/ Since G'(f) = Gl'(g)/C? = | Ag = C*A¢| = quartic
algebraic equation for C.
e Fours roots C = {Cy}
@ Ag(Cx) can be positive, negative or zero, depending on Cj. If
bk = bi(c3, ca) then C =1 is a root and A,(1) = 0.

o If Ag > 0 then there is de Sitter solution = late time
acceleration. Since one has to have Ay ~ 1/H? =
either m ~ 1/H or cos?n (Py + CP1) ~ 1/H?.




Proportional solutions

o If there is matter then proportional solutions are possible if
only the matter is fine-tuned such that T} = T}/ C?.
However, matter becomes negligible at late times =
proportional de Sitter is the late time attractor for generic
cosmologies = inhomogeneous, anisotropic, with any matter.

@ Proportional black holes are the same as in GR =
Schwarzschild (Kerr)-(anti)-de Sitter. However, when
perturbed, solutions show a mild (~ m) instability due to the
scalar graviton polarization mode.

@ Proportional solutions exist only in bigravity, not in massive
gravity with a fixed f-metric.



[l. Decoupled solutions

)

T =71 —U T = — TfT‘f,
with 74, = o, + baldsd",
O'“l, = {b1Uo+b2U1+b3U2}")/“V

— {b2Uo + bsls} (V*)", + {bslho} (+*)",

Let us require that then

TH, = —N\g6lh T = —N\¢dH
with s
vV —8
Ny = g b U, Nr=0b Uy = b
g 2 KUk f 4 — a 4

and the field equations require these to be constants.



[I. Non-bidiagonal solutions



Common SO(3)

02 — —ade+ 0 L a2
sg = — —|—F—i—r

d 2
ds? = —CdT2+%+U2dQ2

A, B depend on t, r while C, D depend on T(t,r), U(t,r). Field
equations reduce to

o
U=Cr where b;+2bC+b3C?=0
o
Gu(g) +Ngguw =0 Gu(f) + Nrf =0
Ng = m?cos?n(bg+2b1C + byC?)

-2
Ar = m2SIC—n2n(b2+2b3C+b4C2)

o A differential condition for T(t,r).



Explicit non-bidiagonal solutions

Schwarzschild-(anti)-de Sitter

dr? 2M A
2 2 2 2 _ g g 2
ng = —Ydt +f+rdQ, Y = —i_?
dr? 2Ms  C2A
ds? = C*(-AdT?+ - 4+2dQ?), A=1-"F =200
A r 3
A AY
— (0:T)? 9, TP =1

infinitely many inequivalent solutions, the simplest one

1 1
T—t—i—/(z—i—A)dr

o If My = Mf = 0 = de Sitter cosmology, one can add matter.
o If My #0, M¢ # 0 = black holes.
o If Mf =0 and 7 — 0 then Af ~ sin>n — 0 = f-metric is flat

= all known cosmologies and black holes in massive gravity
@ Same linear perturbations as in GR = scalar graviton is
strongly bound



Massive gravity cosmologies

Cosmological constant A = m?(bg + 2b; C + by C?) where
b1 +2byC + b3C2 = 0. The g-metric is de Sitter, f is flat

ds? = %{—dt2+dr2+dx2+dy2+dzz}

g

1 = —?24+rP+x2+y2+22=-t2+rP+R?
3¢

ds? = T{—dT2+dx2+dy2+dz2}

whear the Stuckelberg field T(t, r) fulfills

(0: T = (0, T)?=1

Infinitely many solution. Only one solution has been
studied. When expressed in different slicings reads



Different slicings

- : 2 >
o flat slicing t =sinh7 + & e, r = cosht — - €7, R = pe”

3 T
ds? = K (—d7? + &*7(dp? + p?dQ?))

o close slicing t = sinh 7, r = cosh 7 cos p, R = cosh 7sinp

3 .
dsg2 =X (=d7? + cos? 7(dp? + sinh? pdQ?))

In both cases f-metric is not diagonal and depends on p
o close slicing t = sinh 7 cosh p, r = cosh 7, R = sinh 7sinh p

ds; = % (=d7? + sinh? 7(dp? + sinh? pdQ?))
2 3¢C? 2_ 2 2 2 12 12
dsf = —— (— cosh® 7d7° + sinh? 7(dp® + sinh® pdQ?))

The two metrics share the same symmetries — "the only
genuinely homogeneous and isotropic dRGT cosmology”.
However, it is unstable /Mukohyama et al/



Summary of non-bidiagonal solutions

@ The only solutions which exist both in bigravity and massive
gravity with fixed f. Exhaust all massive gravity solutions.

@ Comprise an infinite family. The g-metric is the same s in GR
— dS(AdS) or Schwarzschild-(A)dS — but the Stuckelberg
scalars are different.

@ For all of them the scalar graviton is strongly bound — the
linear perturbations are the same as in GR. The difference
arises only in higher orders.

@ Poorly understood. Only one solution (open FRLW cosmology
of Mukohyama) was thoroughly studied and a ghost was
detected at the third perturbation order. It is unclear if this
result extends higher orders.



[Il. "Hairy” cosmologies



FLRW cosmologies with bidiagonal metrics



FLRW ansatz

ds? = —dt? + &> (1 ilr/iﬂ + r2d92> /k=0,+1/
ds} = —A%dt> + eV <1_kr2 - r2d92)
Friedmann equations /¢ = e"V=%/
g2 _Netrg Kk __xa ﬁ:/\vaPf_ﬁefzw
3 4 A2 3 4
Ng = m? cos? n(bo + 3b1€ + 3b&? + b3?)
Ar = m25i2§n(b1 + 3bo€ + 3b3E2 + by&d)

Conservation condition [(ew)' - A (eQ>.} (by+2by€ +b3E%) =0

= |ENr+pr)=Ng+pg| () = &£=E(pg.pr) =£(Q)




With a = e equations reduce to
a’ +U(a) = —k

where U(a) is defined by roots of the algebraic relation (*)

2 T
1
(=] Va illa
05l | 151 Illo e
k=0 1 d D -

Various solutions, at late times generically approaching the
proportional de Sitter.



Anisotropic cosmologies

/Kei-ichi Maeda, M.S.V/



Bianchi class A types

ds? = —dt* + dI? ds? = —A?(t)dt? + dI?

d/§ _ 20 <e25++2\/§6_(w1)2+e2ﬁ+72ﬁﬁ_(w2)2+e—4ﬁ+(w3)2>
d/,? _ ezw( 2B, +2v2B_ (w ) 1 2B —2v2B_ (w ) _|_e—4B+(w3)2)

(w?, ep) = 07 [ea, ep) = CSpec = Bianchi LILVIVILVIILIX

Initial data at t = tp: an anisotropic deformation of a finite size
FLRW. f-sector is empty, g-sector contains radiation + dust. All
solutions rapidly approach proportional backgrounds with constant
H = Q and constant non-zero anisotropies= late time attractor.



VI

Vi

LvI,

B,

Bianchi IX

Q for all Bianchi types (left) and anisotropy parameters for Bianchi
IX (right). At late time anisotropies oscillate around constant

values 5+ = [ (00) + const. x e

—3Ht

Bt e el

cos(wt). The shear energy

behaves as a non-relativistic (dark ?) matter, while in GR it is

~ 1/ab.



In the past solutions show singularity where e and "V vanish,
anisotropies oscillate near singularity.

10

. ) —

-10

In(0y)
In(o)

empty Bianchi IX

B 8 8 & & » 8

Sequence of Kasner-type periods during which eigenvalues of the
three-metric

ap ~ tP with p1+po+ps=p]+p3+p;

1/a® <« shear energy 5_21_+53 — 1/a°



Summary of “hairy” cosmologies

o Exist only in bigravity, comprise a large family. At late times
approach the proportional de-Sitter with constant anisotropies
— late time acceleration.

o Early time behaviours depends crucially on values of by, m
and 7.

o For certain parameter values can be matched to the primary
inflationary stage = candidates for describing physical
cosmology.

Akrami, Kovisto, Amendola, Solomon, Flanders, Mortshel, . ...



Hairy black holes

M.S.V., Phys.Rev. D85 (2012) 124043
Brito, Cardoso, Pani, Phys.Rev. D88 (2013) 064006



Static bidiagonal metrics

RIZ
ds; = —Qdt® + = dr* + R*dQ?
N2
2 U 2 2
dsf = th+ dr + U“dQ2

6 functions Q, N, R, q, Y, U depend on r, one can impose 1 gauge
condition (R = r) = 5 independent equations

Go(g) = r1 Ty,
G/(g) = m T/,
Go(f) = rmaTo,
G/(f) = k2 T/,

2
T+ (T =T8)+2(T) - T/) =0.



Event horizon at r = ry,

Equations reduce to a dynamical system for N, Y, U, one has

N2 = Zan(r—rh)"’ Y2 — Z bn(r_rh)n’ U= Uh+z c,,(r—rh)”

n>1 n>1 n>1

@ Regular horizon is common for both metrics

@ Black hole solutions comprise a two-parameter set labeled by
rp and up = horizon radii measured by the two metric.

@ Horizon surface gravities and temperatures are the same for
both metrics.



Black holes with massive graviton hair

2 3
In(r/r,)

3 4
In(r/ry)

o For generic values of rp, up solutions either show a curvature
singularity at a finite distance away from rj, or approach
asymptotically the AdS space /M.S.V. 2012/

o For specially fine-tuned ry, up, there are asymptotically flat
black holes with r, ~ 1/m = they are cosmologically large
/Brito, Cardoso, Pani 2013/



Wormbholes

/S.V.Sushkov and M.S.V. 2015/



Wormholes — bridges between universes

ds®> = —Q?(r)dt? + dr* + R?(r)(dv¥? + sin® 9dp?),

° Gy, =81GT,, = p+p <0, p<0 = violation of the null
energy conditions = vacuum polarization, or exotic matter
(phantoms), or gravity modifications (Gauss-Bonnet,
braneworld).

@ The structure of T, and 7,, in the bigravity theory
generically violates the N.E.C. /Visser et al, 2012/



Wormholes — local solution

ds; = —Q%dt* +dr’ + R*dQ?
U/2
dsf = —q'dt’+ 5 drt+ UdQ?
Y = Yir+YsrP4+... Q=Q+ Qr’+... R=h+Ror’>+...
g = qo+qri+... U=uh+ Usr®+ ...

Expanding the field equations gives in the leading order algebraic
equations for @y and qo, whose solution exists if only h > 1/1/3
(in units of 1/m) = wormholes are cosmologically large.




Wormhole solutions

16 . - 06

085

The g-metric is globally regular and asymptotically AdS, has two
AdS boundaries. The f-metric shows a Killing horizon at the point
where g vanishes. The g-geodesics oscillate around r = 0 = throat
is traversable.



Summary of black holes and wormholes

o If the ghost-free bigravity indeed describes the world, then the
astrophysical black holes are the same as in GR, up to a tiny
(~ m) effect of accretion of massive modes.

@ Theory also admits black holes with massive graviton hair.
The are generically asymptotically AdS and exceptionally
asymptotically flat (but very large).

@ Theory admits Lorentzian wormholes. No exotic matter is
needed. Wormbholes are cosmologically large = in principle we
all might live inside a wormhole.



Superluminality



o Characteristic surfaces of the dRGT massive gravity theory
can be locally timelike = superluminal signals.

@ This has also been detected in the Galileon models.

@ It is unclear if this implies aucausality. It is also unclear if
timelike characteristics can be global.



Energy

/M.S.V./



Spherical symmetry

ds; = —N’dt? + 23 (dr—l—ﬁdt) + R%d0?
ds? = —dt? + dr? +r2dQ2

N, 3, R, A depend on t,r. Lapse N and shift 8 are non-dynamical.
Dynamical variables are A, R and their momenta

oo
pA_aAa pR_aRa

Phase space is 4-dimensional, spanned by (R, A, pr, pa).



Hamiltonian

H= NHo + BH, + m*V

where
A3 2 ) 1
/ AV
Ho 4R2PA+2RPAPR+ARR +2R(ARY) = &
Hr = Ax+2A0'pa+R'pr

and the potential

NR?Py  R2P
0 + 1

V=" A

V(BN +1)2 - 52 1 R2P,

with
2

P = by + 2bp 11 -

b
R+ +255



Number of DoF

oH , 0V
oH L0V

o If m=0 = 2 first class constraints, Ho =0 and H, =0 =
4 —2 —2 =0 DoF = no dynamics = Birkhoff theorem

o If m # 0 = the second equations determines 3, while the fist
one gives the constraint

C(A,R,pa,pr) =0



Hamiltonian and constraints

y
H =&+ NC, 5:Z+m2R2P2

with

2P0

C=Ho+Y+m’ R with Y = \/(AHr)z + (m?R2Py)?

Secondary constraint

m*R? P? AH '
s = ety =" Beat Ree) - v (5)
A2 m*
- 5 {2AY Or(R*P?) + m26R(R2P2)}
m*H,

v {A(R?P>) + R?0,(Py — APy)} =0

=4 —-2=2x1DoF. Energy E = fooo Edr assuming C =S = 0.



Conclusions

@ The energy is positive in the physical sector of the theory.
o Other sectors shows ghost-like features — negative energies
and tachyons, they are unphysical.

@ The physical sector is protected from the unphysical ones by a
potential barrier.

Remarks

@ (A) The energy is claimed to be always positive if the
parameters are chosen as by ~ 6+ /Comelli and Pilo/

@ (B) There is a one-parameter family of theories with 5 + 1
DoF which contains (A) as a special case where the energy is
claimed to be positive even in the presence of the ghost
/Ogievetsky, Polubarinov 1965/.



