Massive gravity theories

Mikhail S. Volkov
Institut Denis Poisson, University of Tours, FRANCE
Helmholtz International Summer School
"Cosmology, Strings, New Physics"
Dubna, August 2019

Motivations for massive gravity

Cosmic acceleration \Rightarrow dark energy problem.

- either Λ-term, very natural phenomenologically,

$$
G_{\mu \nu}=\kappa T_{\mu \nu} \quad \rightarrow \quad G_{\mu \nu}+\Lambda g_{\mu \nu}=\kappa T_{\mu \nu}
$$

but unnatural from the QFT viewpoint

- or modification of gravity (many options). Massive gravity:

$$
\text { Newton } \frac{1}{r} \quad \rightarrow \quad \text { Yukawa } \frac{1}{r} e^{-m r}
$$

$m \sim 1 /$ (Hubble radius) $\sim 10^{-33} \mathrm{eV}$. If $r<$ Hubble, then Yukawa=Newton, usual physics. Screening for $r \geq$ Hubble \Rightarrow gravity is weaker at large distance $=$ cosmic acceleration.

- From QFT viewpoint small m is more natural (multiplicative renormalization) than small \wedge (additive renormalization).

Contents

- Fierz-Pauli theory
- VdVZ discontinuity
- Non-linear Fierz-Pauli
- Vainshtein mechanism
- Hamiltonian analysis and the Bouleware-Deser ghost
- Ghost-free massive gravities
- Properties of the dRGT potential
- Bigravity
- Cosmologies and black holes
- Energy and superluminality
- Other issues

Reviews:
de Rham, Liv.Rev.Rel. 17 (2014) 7
Hinterbichler, Rev.Mod.Phys. 84 (2012) 681
Rubakov and Tyniakov, UFN (2008)

Key names classical: Fierz-Pauli, van-Dam-Veltman-Zakharov, Vainshtein, Boulwre-Deser, Ogievetsky-Polybarinov

Key names recent: de Rham-Gabadadze-Tolley, Hassan-Rosen
Other names: Comelli-Pilo, Mukohyama et al., Visser et al., Deser-Waldron, Akrami-Kovisto et at., Deffayet et al., etc.

M.S.V. JHEP 01 (2012) 035; PRD 86 (2012) 104022;
PRD 85 (2012), CQG 30 (2013) 184009; 124043; PRD 90 (2014)
124090, PRD 87 (2013) 104009, JCAP 1506 (2015) 06, 017,
JCAP 1807 (2018) 012, JCAP 1810 (2018) 037.

Fierz-Pauli massive gravity

Linear massless gravitons - linearized GR

$\mathcal{L}=\frac{1}{2 \kappa} R \sqrt{-g}+\mathcal{L}_{\text {matter }} \quad / \kappa=8 \pi G$, signature $(-+++) /$

$$
G_{\mu \nu}=\kappa T_{\mu \nu}
$$

If $g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}$ then /check this/

$$
\begin{aligned}
& -\frac{1}{2}\left\{\square h_{\mu \nu}-\partial_{\mu} \partial^{\alpha} h_{\alpha \nu}-\partial_{\nu} \partial^{\alpha} h_{\alpha \mu}+\eta_{\mu \nu}\left(\partial^{\alpha} \partial^{\beta} h_{\alpha \beta}-\square h\right)+\partial_{\mu \nu} h\right\} \\
& \equiv-\frac{1}{2}\left(\square h_{\mu \nu}+\ldots\right)=\kappa T_{\mu \nu}
\end{aligned}
$$

so that

$$
\square h_{\mu \nu}+\ldots=-2 \kappa T_{\mu \nu}
$$

Gauge invariance $h_{\mu \nu} \rightarrow h_{\mu \nu}+\partial_{\mu} \xi_{\nu}+\partial_{\nu} \xi_{\mu}$ does not change the I.h.s. \Rightarrow Bianchi identities

$$
0 \equiv \partial^{\mu}\left(\square h_{\mu \nu}+\ldots\right) \quad \Rightarrow \quad \partial^{\mu} T_{\mu \nu}=0
$$

DoF counting

Gauge invariance $h_{\mu \nu} \rightarrow h_{\mu \nu}+\partial_{\mu} \xi_{\nu}+\partial_{\nu} \xi_{\mu}$ implies that one can impose gauge conditions. With $\mathbf{h}_{\mu \nu}=h_{\mu \nu}-\frac{h}{2} \eta_{\mu \nu}$ one requires

$$
\partial^{\mu} \mathbf{h}_{\mu \nu}=0 \quad 4 \text { gauge conditions }
$$

and the equations reduce to

$$
\square \mathbf{h}_{\mu \nu}=-2 \kappa T_{\mu \nu}
$$

Residual gauge freedom with $\square \xi_{\mu}=0 \Rightarrow$ one can impose 4 more conditions $\Rightarrow 2=10-4-4$ DoF. If $T_{\mu \nu}=0$

$$
\mathbf{h}=0, \quad \mathbf{h}_{0 k}=0 \quad \Rightarrow \quad \mathbf{h}_{00}=0, \quad \partial_{i} \mathbf{h}_{i k}=0
$$

the solution is

$$
\mathbf{h}_{\mu \nu}(t, z)=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & D_{+} & D_{\times} & 0 \\
0 & D_{\times} & -D_{+} & 0 \\
0 & 0 & 0 & 0
\end{array}\right) e^{i k(t-z)}
$$

Quadratic action

The equations can be obtained from $S=\int \mathcal{L} d^{4} \times$ with

$$
\mathcal{L}=\frac{1}{\kappa} \mathcal{L}_{0}+\frac{1}{2} h_{\mu \nu} T^{\mu \nu}
$$

with
$\mathcal{L}_{0}=$ quadratic part of $\left\{\frac{1}{2} R \sqrt{-g}\right\}$

$$
=\frac{1}{4}\left(-\frac{1}{2} \partial_{\alpha} h_{\mu \nu} \partial^{\alpha} h^{\mu \nu}+\partial_{\mu} h_{\nu \alpha} \partial^{\nu} h^{\mu \alpha}-\partial_{\mu} h^{\mu \nu} \partial_{\nu} h+\frac{1}{2} \partial_{\mu} h \partial^{\mu} h\right)
$$

which is invariant under diffeomorphisms

$$
\mathcal{L}_{0}\left(h_{\mu \nu}+\partial_{\mu} \xi_{\nu}+\partial_{\nu} \xi_{\mu}\right)=\mathcal{L}_{0}\left(h_{\mu \nu}\right)
$$

The matter term is also invariant since $\partial_{\mu} T^{\mu \nu}=0$.

Linear massive gravitons - Fierz and Pauli /1939/

$$
\square \phi=0 \Rightarrow \square \phi=m^{2} \phi . \quad \text { Similarly for gravitons } / h=\eta^{\mu \nu} h_{\mu \nu} /
$$

$$
\square h_{\mu \nu}+\ldots=m^{2}\left(h_{\mu \nu}-\alpha h \eta_{\mu \nu}\right)-2 \kappa T_{\mu \nu}
$$

\Rightarrow no gauge invariance anymore. Taking the divergence gives 4 constraints

$$
m^{2}\left(\partial^{\mu} h_{\mu \nu}-\alpha \partial_{\nu} h\right)=0
$$

Taking the trace and using the 4 constraints gives

$$
2(\alpha-1) \square h=m^{2}(1-4 \alpha) h-2 \kappa T
$$

\Rightarrow for $\alpha=1$ one gets the fifth constraint

$$
h=-\frac{2 \kappa}{3 m^{2}} T
$$

$\Rightarrow 10-5=5$ DoF=graviton polarizations.

FP action

The FP equations can be obtained from $S=\int \mathcal{L}_{\mathrm{FP}} d^{4} x$ with

$$
\mathcal{L}_{\mathrm{FP}}=\frac{1}{\kappa}\left(\mathcal{L}_{0}-m^{2} U\right)+\frac{1}{2} h_{\mu \nu} T^{\mu \nu}
$$

where the kinetic term is the same as in GR,

$$
\mathcal{L}_{0}=\frac{1}{4}\left(-\frac{1}{2} \partial_{\alpha} h_{\mu \nu} \partial^{\alpha} h^{\mu \nu}+\partial_{\mu} h_{\nu \alpha} \partial^{\nu} h^{\mu \alpha}-\partial_{\mu} h^{\mu \nu} \partial_{\nu} h+\frac{1}{2} \partial_{\mu} h \partial^{\mu} h\right)
$$

while the mass term

$$
U=\frac{1}{8}\left(h_{\mu \nu} h^{\mu \nu}-h^{2}\right)
$$

breaks the diff. invariance.

$$
\begin{aligned}
\square h_{\mu \nu} & -\partial_{\mu} \partial^{\alpha} h_{\alpha \nu}-\partial_{\nu} \partial^{\alpha} h_{\alpha \mu}+\eta_{\mu \nu}\left(\partial^{\alpha} \partial^{\beta} h_{\alpha \beta}-\square h\right) \\
& +\partial_{\mu \nu} h=m^{2}\left(h_{\mu \nu}-h \eta_{\mu \nu}\right)-2 \kappa T_{\mu \nu}
\end{aligned}
$$

are equivalent to

$$
\begin{aligned}
\square h_{\mu \nu}-\partial_{\mu \nu} h & =m^{2}\left(h_{\mu \nu}-h \eta_{\mu \nu}\right)-2 \kappa T_{\mu \nu} \\
\partial^{\mu} h_{\mu \nu} & =\partial_{\nu} h \\
h & =-\frac{2 \kappa}{3 m^{2}} T
\end{aligned}
$$

They describe free massive gravitons in flat space. Each graviton has 5 degrees of freedom $=5$ spin polarizations.

Theory is NOT invariant under $h_{\mu \nu} \rightarrow h_{\mu \nu}+\partial_{\mu} \xi_{\nu}+\partial_{\nu} \xi_{\mu}$

If $T_{\mu \nu}=0$ then

$$
\begin{aligned}
\square h_{\mu \nu} & =m^{2}\left(h_{\mu \nu}-h \eta_{\mu \nu}\right) \\
\partial^{\mu} h_{\mu \nu} & =h=0
\end{aligned}
$$

the solution is, with $\omega=\sqrt{k^{2}+m^{2}}$,

$$
\begin{aligned}
& \mathbf{h}_{\mu \nu}(t, z)=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & D_{+} & D_{\times} & 0 \\
0 & D_{\times} & -D_{+} & 0 \\
0 & 0 & 0 & 0
\end{array}\right) e^{i(\omega t-k z)} \\
&+\left(\begin{array}{cccc}
0 & V_{1} & V_{2} & 0 \\
V_{1} & 0 & 0 & 0 \\
V_{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) e^{i(\omega t-k z)}+\left(\begin{array}{cccc}
2 S & 0 & 0 & 0 \\
0 & -S & 0 & 0 \\
0 & 0 & -S & 0 \\
0 & 0 & 0 & 0
\end{array}\right) e^{i(\omega t-k z)}
\end{aligned}
$$

Contribution of vectors and scalar to the GW170817 signal is less than 0.1%. Taking $m \rightarrow 0$, tensor modes become massless gravitons. Vectors and scalars can probably be set to zero.

Veltman-van Dam-Zakharov (VdVZ) discontinuity

VdVZ discontinuity /1970/

If $T_{\mu \nu} \neq 0$ then the FP equations are

$$
\begin{aligned}
\square h_{\mu \nu}+\ldots & =m^{2}\left(h_{\mu \nu}-h \eta_{\mu \nu}\right)-2 \kappa T_{\mu \nu} \\
\partial^{\mu} h_{\mu \nu} & =\partial_{\nu} h \\
h & =-\frac{2 \kappa}{3 m^{2}} T
\end{aligned}
$$

The $m \rightarrow 0$ limit is apparently singular. How to take it ?

Introducing the Stueckelberg fields $\chi_{\mu \nu}, A_{\mu}$, and ϕ one decomposes $h_{\mu \nu}$ into tensor, vector, and the scalar parts as

$$
h_{\mu \nu}=\chi_{\mu \nu}+\frac{1}{m}\left(\partial_{\mu} A_{\nu}+\partial_{\nu} A_{\mu}\right)+\frac{1}{m^{2}} \partial_{\mu} \partial_{\nu} \phi
$$

This is invariant under the local

$$
\begin{aligned}
\chi_{\mu \nu} \rightarrow \chi_{\mu \nu}+\partial_{\mu} \xi_{\nu}+\partial_{\nu} \xi_{\mu} & A_{\mu} \rightarrow A_{\mu}-m \xi_{\mu} \\
A_{\mu} \rightarrow A_{\mu}+\partial_{\mu} \Psi & \phi \rightarrow \phi-m \Psi
\end{aligned}
$$

Setting $\chi_{\mu \nu}=\mathbf{h}_{\mu \nu}+(\phi / 2) \eta_{\mu \nu}$ and taking the $m \rightarrow 0$ limit gives

$$
\begin{aligned}
\square \mathbf{h}_{\mu \nu}+\ldots & =-2 \kappa T_{\mu \nu} & & \text { tensor modes } \\
\partial^{\mu}\left(\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}\right) & =0 & & \text { vector modes } \\
\square \phi & =-\frac{2 \kappa}{3} T & & \text { scalar mode }
\end{aligned}
$$

Vector modes decouple. Scalar rests coupled the matter \Rightarrow additional attractive field (5th force) \Rightarrow wrong Newton law but correct light bending. One can rescale $\kappa \Rightarrow$ correct Newton law but wrong light bending.

VdVZ - two source interaction

The tree amplitude of interaction of two matter sources is

$$
\mathcal{A}_{12}=\kappa T_{1}^{\mu \nu} P_{\mu \nu \alpha \beta} T_{2}^{\alpha \beta}
$$

One has in the FP theory

$$
P_{\mu \nu \alpha \beta}=P_{\mu \nu \alpha \beta}^{\mathrm{FP}}=\sum_{i=1}^{5} e_{\mu \nu}^{i} e_{\alpha \beta}^{i} \frac{1}{p^{2}-m^{2}},
$$

while in GR

$$
P_{\mu \nu \alpha \beta}=P_{\mu \nu \alpha \beta}^{\mathrm{GR}}=\sum_{i=1}^{2} e_{\mu \nu}^{i} e_{\alpha \beta}^{i} \frac{1}{p^{2}}
$$

If $m \rightarrow$ then

$$
P_{\mu \nu \alpha \beta}^{\mathrm{FP}}=P_{\mu \nu \alpha \beta}^{\mathrm{GR}}+\frac{\eta_{\mu \nu} \eta_{\alpha \beta}}{p^{2}}+\ldots
$$

extra term gives an extra attraction due to the scalar graviton coupled to T.

FP does not agree with GR, however small m is.

VdVZ solution

Scalar graviton mode can propagate in the spherically-symmetric sector

$$
d s^{2}=-e^{\nu(R)} d t^{2}+e^{\lambda(R)} d R^{2}+R^{2} d \Omega^{2}
$$

Let $R \rightarrow R(r)=r e^{\mu(r) / 2}$ then

$$
d s^{2}=-e^{\nu(r)} d t^{2}+e^{\lambda(r)} R^{\prime 2}(r) d r^{2}+r^{2} e^{\mu(r)} d \Omega^{2}
$$

- In GR metrics (\star) and $(\star \star)$ are equivalent and μ is a pure gauge parameter, one can set $\mu=0$ by changing back $r \rightarrow r(R)$.
- In FP there is no invariance, (\star) and $(* *)$ are NOT equivalent, $\mu(r)$ is not a pure gauge but describes the scalar graviton.
- Linearizing ($* *$) gives

$$
h_{00}=\nu, \quad h_{r r}=-\lambda-(r \mu)^{\prime}, \quad h_{\vartheta \vartheta}=-r^{2} \mu, \quad h_{\varphi \varphi}=-r^{2} \mu \sin ^{2} \vartheta
$$

The FP equations

FP equations

$$
\begin{align*}
\frac{1}{r} \lambda^{\prime}+\frac{1}{r^{2}} \lambda & =-\frac{m^{2}}{2}\left(\lambda+3 \mu+r \mu^{\prime}\right) \\
-\frac{1}{r} \nu^{\prime}+\frac{1}{r^{2}} \lambda & =-m^{2}\left(\mu+\frac{\nu}{2}\right) \\
m^{2}\left(\frac{\nu^{\prime}}{2}-\frac{\lambda}{r}\right) & =0
\end{align*}
$$

For $m=0$ one gets the GR solution (μ is arbitrary $=$ pure guge)

$$
\lambda=-\nu=\frac{r_{g}}{r} \equiv \frac{2 \kappa M}{r} \quad \nu+\lambda=0
$$

For $m \neq 0$ this does not pass through (\dagger), one finds instead

VdVZ potential

$$
\begin{aligned}
& \nu=-\frac{2 C}{r} e^{-m r}, \quad \lambda=\frac{C}{r}(1+m r) e^{-m r} \\
& \mu=C \frac{1+m r+(m r)^{2}}{m^{2} r^{3}} e^{-m r}
\end{aligned}
$$

In the near zone, for $r \ll 1 / m$, this reduces to the VdVZ solution

$$
\nu=-\frac{2 C}{r}, \quad \lambda=\frac{C}{r}, \quad \mu=\frac{C}{r(m r)^{2}} \sim \frac{1}{r^{3}}
$$

therefore

$$
\nu+\lambda \neq 0
$$

\Rightarrow depending on choice of C either the Newton law is wrong or the light bending is wrong.

Does this rule out the massive gravity ?
No, there is a remedy at the non-linear level.

Non-linear Fierz-Pauli -
the bimetric theory

Non-linear FP

$$
S=\frac{1}{\kappa} \int \sqrt{-g}\left(\frac{1}{2} R(g)-m^{2} U(g, f)\right) d^{4} x+S_{\mathrm{mat}}
$$

where U is a scalar function of $g_{\mu \nu}$. One cannot construct a scalar using only $g_{\mu \nu}$. However, if there is a second fixed non-dynamical reference metric $f_{\mu \nu}=\eta_{\mu \nu}$ then one defines

$$
\hat{\mathcal{S}}=\hat{1}-\hat{g}^{-1} \hat{f} \quad \Rightarrow \quad \mathcal{S}_{\nu}^{\mu}=\delta_{\nu}^{\mu}-g^{\mu \sigma} f_{\sigma \nu}
$$

and then one can choose any function (infinitely many options)

$$
U=U\left([\hat{\mathcal{S}}],\left[\hat{\mathcal{S}}^{2}\right],\left[\hat{\mathcal{S}}^{3}\right], \operatorname{det} \hat{\mathcal{S}}\right)
$$

In the weak field limit $g_{\mu \nu}=f_{\mu \nu}+h_{\mu \nu}$ and $\mathcal{S}_{\mu \nu}=h_{\mu \nu}+\ldots$ The correct FP limit for small $\hat{\mathcal{S}}$ is achieved if

$$
U=\frac{1}{8}\left(\left[\hat{\mathcal{S}}^{2}\right]-[\hat{\mathcal{S}}]^{2}\right)+\mathcal{O}\left(\mathcal{S}^{3}\right)
$$

One can allow for diffeomorphisms by setting

$$
f_{\mu \nu}=\eta_{A B} \partial_{\mu} \Phi^{A} \partial_{\nu} \Phi^{B}
$$

where Φ^{A} are Stueckelberg scalars.

Equations

One can define two energy-momentum tensors

$$
T_{\mu \nu}=2 \frac{\partial U}{\partial g_{\mu \nu}}-U g_{\mu \nu}, \quad \mathcal{T}_{\mu \nu}=2 \frac{\partial U}{\partial f_{\mu \nu}}-U f_{\mu \nu}
$$

the equations are

$$
G_{\mu \nu}=m^{2} T_{\mu \nu} \Rightarrow \nabla^{\mu} T_{\mu \nu}=0
$$

The diff. invariance of U implies the identity

$$
\sqrt{-g} \nabla^{\mu} T_{\mu \nu}-\sqrt{-\eta} \partial^{\mu} \mathcal{T}_{\mu \nu} \equiv 0
$$

and therefore one has on-shell

$$
\partial^{\mu} \mathcal{T}_{\mu \nu}=0
$$

Theory of Ogievetsky-Polubarinov /1965/

$$
S=\frac{1}{\kappa} \int \sqrt{-g}\left(\frac{1}{2} R(g)-m^{2} U(g, \eta)\right) d^{4} x
$$

the primary object is the graviton field $h^{\mu \nu}$ defining the metric

$$
\left(\frac{\sqrt{-g}}{\sqrt{-\eta}}\right)^{s+1}\left(\left(\hat{g}^{-1}\right)^{\eta}\right)^{\mu \nu}=\eta^{\mu \nu}+h^{\mu \nu} .
$$

the equations

$$
\begin{aligned}
G_{\mu \nu}=m^{2} T_{\mu \nu} & \Rightarrow \quad \square h_{\mu \nu}=m^{2} h_{\mu \nu}+\text { non-linear terms } \\
\partial^{\mu} \mathcal{T}_{\mu \nu}=0 & \Rightarrow \quad \partial^{\mu} h_{\mu \nu}=\lambda \partial_{\nu} h
\end{aligned}
$$

the OP potential, with $S_{\nu}^{\mu}=g^{\mu \sigma} \eta_{\sigma \nu}$,

$$
U=\frac{1}{4 n^{2}}(\operatorname{det}(\hat{S}))^{-s / 2}\left[\hat{S}^{n}\right]
$$

which gives $\lambda=-s /(2 n)$.

VdVZ and Vainshtein mechanism

Let us consider a non-linear FP

$$
S=\frac{1}{\kappa} \int\left(\frac{1}{2} R-\frac{m^{2}}{8}\left(\mathcal{S}_{\beta}^{\alpha} \mathcal{S}_{\alpha}^{\beta}-\left(\mathcal{S}_{\alpha}^{\alpha}\right)^{2}\right)\right) \sqrt{-g} d^{4} x+S_{\mathrm{mat}}
$$

with $\mathcal{K}_{\nu}^{\mu}=\delta_{\nu}^{\mu}-g^{\mu \alpha} \eta_{\alpha \nu}$ and consider a spherically symmetric metric

$$
d s^{2}=e^{\nu(r)} d t^{2}-e^{\lambda(r)} R^{\prime 2} d r^{2}-R^{2} d \Omega^{2}
$$

with $R=r e^{\mu / 2}$ and compute non-linear corrections to the VdVZ . At large r, one looks for solutions of $G_{\mu \nu}=m^{2} T_{\mu \nu}$ in the form
$\nu(r)=\sum_{n \geq 1} \kappa^{n} \nu_{n}(r), \quad \lambda(r)=\sum_{n \geq 1} \kappa^{n} \lambda_{n}(r), \quad \mu(r)=\sum_{n \geq 1} \kappa^{n} \mu_{n}(r)$.
the $n=1$ terms being the VdVZ solution

Large r solution

$$
\begin{aligned}
\nu & =-\frac{2 r_{g}}{r}\left(1+c_{1} \frac{r_{g}}{m^{4} r^{5}}+\ldots\right) \\
\lambda & =\frac{r_{g}}{r}\left(1+c_{2} \frac{r_{g}}{m^{4} r^{5}}+\ldots\right) \\
\mu & =\frac{r_{g}}{m^{2} r^{3}}\left(1+c_{3} \frac{r_{g}}{m^{4} r^{5}}+\ldots\right)
\end{aligned}
$$

Leading terms are the $V d V Z$ solution. For $m \sim\left(10^{25} \mathrm{~cm}\right)^{-1}$ the next-to-leading terms are $\sim r_{g} /\left(m^{4} r^{5}\right) \sim 10^{32}$ at the edge of solar system. They become small only for

$$
r \gg r_{V}=\left(r_{g} / m^{4}\right)^{1 / 5} \sim 100 \mathrm{Kps}
$$

The VdVZ problem therefore arises only for $r \gg r_{V}$.

$$
\nu(r)=\sum_{n \geq 0} m^{2 n} \nu_{n}(r), \quad \lambda(r)=\sum_{n \geq 0} m^{2 n} \lambda_{n}(r), \quad \mu(r)=\sum_{n \geq 0} m^{2 n} \mu_{n}(r)
$$

it is assumed that ν_{0}, λ_{0} are small, their equations are linearized, while μ_{0} is not small and its equation is fully non-linear. For $r \gg r_{g}$ one finds

$$
\begin{aligned}
\nu & =-\frac{r_{g}}{r}\left(1+a_{1}(m r)^{2} \sqrt{r / r_{g}}+\ldots\right) \\
\lambda & =\frac{r_{g}}{r}\left(1+a_{2}(m r)^{2} \sqrt{r / r_{g}}+\ldots\right) \\
\mu & =\sqrt{\frac{a r_{g}}{r}}\left(1+a_{3}(m r)^{2} \sqrt{r / r_{g}}+\ldots\right)
\end{aligned}
$$

so ν, λ show the GR behavior. Corrections are small for $r \ll r_{V} \Rightarrow$ one recovers $G R$ in the non-linear regime.

Vainshtein scenario

- The VdVZ discontinuity is only visible in the linear regime, for

$$
r \gg r_{V}=\left(\frac{r_{g}}{m^{4}}\right)^{1 / 5} \sim 100 K p s
$$

- For $r \ll r_{V}$ the scalar graviton is frozen by non-linear effects and does not propagate $\Rightarrow G R$ is recovered.
- For $r \sim r_{V}$ there is a transition between the two regimes.

The VdVZ problem is cured by the non-linear effects. This restores GR.

A model for Vainshtein

$$
\begin{gathered}
S=\frac{1}{\kappa} \int\left(\frac{1}{2} R-\frac{m^{2}}{8}\left(\mathcal{K}_{\beta}^{\alpha} \mathcal{K}_{\alpha}^{\beta}-\left(\mathcal{K}_{\alpha}^{\alpha}\right)^{2}\right)\right) \sqrt{-g} d^{4} x+S_{\mathrm{mat}} \\
\mathcal{K}_{\nu}^{\mu}=\delta_{\nu}^{\mu}-g^{\mu \alpha} f_{\alpha \nu} \quad f_{\mu \nu}=\eta_{A B} \partial_{\mu} \Phi^{A} \partial_{\nu} \Phi^{B}
\end{gathered}
$$

In static, spherically symmetric case

$$
\begin{aligned}
g_{\mu \nu} d x^{\mu} d x^{\nu} & =-e^{\nu(r)} d t^{2}+e^{\lambda(r)} d r^{2}+r^{2} d \Omega^{2} \\
f_{\mu \nu} d x^{\mu} d x^{\nu} & =-d t^{2}+d R^{2}+R^{2} d \Omega^{2} \\
R(r) & =r e^{\mu(r) / 2} \quad \text { Stuckelberg field }
\end{aligned}
$$

One looks for an asymptotically flat solution describing a localized object (star). Field equations

$$
\begin{gathered}
G_{\mu \nu}=m^{2} T_{\mu \nu}+\kappa T_{\mu \nu}^{\mathrm{mat}} \\
T_{\mu \nu}=2 \frac{\partial \mathcal{U}}{\partial g^{\mu \nu}}-g_{\mu \nu} \mathcal{U}, \quad T_{\nu}^{\operatorname{mat}}{ }_{\nu}^{\mu}=\operatorname{diag}[-\rho, P, P, P]
\end{gathered}
$$

$$
\begin{aligned}
H_{\nu}^{\mu} & =\operatorname{diag}\left[1-e^{-\nu}, 1-e^{-\lambda} R^{\prime 2}, 1-e^{\mu}, 1-e^{\mu}\right] \\
T_{\nu}^{\mu} & =\delta_{\nu}^{\mu} \frac{1}{8}\left(\left(1-H_{\nu}^{\mu}\right)\left(H_{\nu}^{\mu}-[H]\right)+\left[H^{2}\right] \quad / \text { no sum over } \mu, \nu /\right.
\end{aligned}
$$

4 independent field equations determine ν, λ, μ, P

$$
\begin{array}{rlr}
G_{0}^{0} & =e^{-\lambda}\left(\frac{1}{r^{2}}-\frac{\lambda^{\prime}}{r}\right)-\frac{1}{r^{2}}=m^{2} T_{0}^{0}-\kappa \rho & \\
G_{r}^{r} & =e^{-\lambda}\left(\frac{1}{r^{2}}+\frac{\nu^{\prime}}{r}\right)-\frac{1}{r^{2}}=m^{2} T_{r}^{r}+\kappa P & \\
\left(T_{r}^{r}\right)^{\prime} & =-\frac{\nu^{\prime}}{2}\left(T_{r}^{r}-T_{0}^{0}\right)+\frac{2}{r}\left(T_{\vartheta}^{\vartheta}-T_{r}^{r}\right) \quad \text { /conservation of } T_{\mu \nu} / \\
P^{\prime} & =-\frac{\nu^{\prime}}{2}(P+\rho) & \text { /conservation of } T_{\mu \nu}^{\mathrm{mat}} /
\end{array}
$$

while $\rho(r)=\rho_{\star} \Theta\left(r_{\star}-r\right) \Rightarrow$ star of radius r_{\star} and density ρ_{\star}.

- Free massive gravitons are described by the linear Fierz-Pauli theory.
- This theory gives different from GR predictions in the $m \rightarrow 0$ limit due to the additional attraction mediated by the scalar graviton (VdVZ problem).
- In non-linear generalizations of the FP theory the scalar graviton is strongly bound by non-linear effects within the Vainshtein radius

$$
r_{V}=\left(\frac{r_{g}}{m^{4}}\right)^{1 / 5}
$$

This pushes the VdVZ effect to the region $r \gg r_{V}$ and restores GR for $r \ll r_{V}$.

- As a result, theories with massive gravitons can agree with observations.

Boulware-Deser problem: non-linear effects bring back the ghost $=$ sixth DoF.

Fierz and Pauli with 6 DoF

$$
\square h_{\mu \nu}+\ldots=m^{2}\left(h_{\mu \nu}-\alpha h \eta_{\mu \nu}\right)-2 \kappa T_{\mu \nu}
$$

Taking the divergence gives 4 constraints

$$
m^{2}\left(\partial^{\mu} h_{\mu \nu}-\alpha \partial_{\nu} h\right)=0
$$

Taking the trace gives

$$
2(\alpha-1) \square h=m^{2}(1-4 \alpha) h-2 \kappa T
$$

\Rightarrow for $\alpha=1$ one gets the fifth constraint

$$
h=-\frac{2 \kappa}{3 m^{2}} T
$$

$\Rightarrow 10-5=5$ DoF=graviton polarizations.
If $\alpha \neq 1 \Rightarrow$ there are 6 DoF. The additional mode is a ghost: its kinetic energy is negative.

Let $\alpha \neq 1$. One can always decompose $h_{\mu \nu}$ as

$$
h_{\mu \nu}=\psi_{\mu \nu}+\partial_{\mu} \xi_{\nu}+\partial_{\nu} \xi_{\mu}+\partial_{\mu \nu} \phi \quad \Rightarrow \quad h=\psi+\square \phi
$$

where $\partial^{\mu} \psi_{\mu \nu}=\partial^{\mu} \xi_{\mu}=0$. The last FP equation

$$
2(\alpha-1) \square h=m^{2}(1-4 \alpha) h-2 \kappa T
$$

then gives $\square^{2} \phi+\ldots=0$, the corresponding term in the action

$$
\begin{aligned}
(\square \phi)^{2} & =\chi \square \phi-\frac{1}{4} \chi^{2} \quad / \chi=2 \square \phi / \\
& =\left(\phi_{1}-\phi_{2}\right) \square\left(\phi_{1}+\phi_{2}\right)-\frac{1}{4}\left(\phi_{1}-\phi_{2}\right)^{2} \\
& =\phi_{1} \square \phi_{1}-\phi_{2} \square \phi_{2}-\frac{1}{4}\left(\phi_{1}-\phi_{2}\right)^{2}
\end{aligned}
$$

The minus $\operatorname{sign}=$ negative kinetic energy $=$ Ostrogradsky ghost.

Boulware-Deser problem /1972/

The ghost can be removed in the linear FP theory by choosing $\alpha=1$. However, it comes back in the non-linear FP. Therefore the latter make no sense.

This stopped all developments of massive gravity for almost 40 years.

Hamiltonian formulation

The Lagrangian

$$
\mathcal{L}=\left(\frac{1}{2} R-m^{2} \mathcal{U}\right) \sqrt{-g}
$$

after the ADM decomposition

$$
\begin{aligned}
d s_{g}^{2} & =-N^{2} d t^{2}+\gamma_{i k}\left(d x^{i}+N^{i} d t\right)\left(d x^{k}+N^{k} d t\right) \\
d s_{f}^{2} & =-d t^{2}+\delta_{i k} d x^{i} d x^{k}
\end{aligned}
$$

becomes
$\mathcal{L}=\frac{1}{2} \sqrt{\gamma} N\left(K_{i k} K^{i k}-K^{2}+R^{(3)}\right)-m^{2} \mathcal{V}\left(N^{\mu}, \gamma_{i k}\right)+$ total derivative
where $\mathcal{V}=\sqrt{\gamma} N \mathcal{U}$ and the second fundamental form

$$
K_{i k}=\frac{1}{2 N}\left(\dot{\gamma}_{i k}-\nabla_{i}^{(3)} N_{k}-\nabla_{k}^{(3)} N_{i}\right)
$$

Variables are $\gamma_{i k}$ and $N^{\mu}=\left(N, N^{k}\right)$.

Hamiltonian

Conjugate momenta
$\pi^{i k}=\frac{\partial \mathcal{L}}{\partial \dot{\gamma}_{i k}}=\frac{1}{2} \sqrt{\gamma}\left(K^{i k}-K \gamma^{i k}\right), \quad p_{N_{\mu}}=\frac{\partial \mathcal{L}}{\partial \dot{N}^{\mu}}=0 \quad$ constraints
$\Rightarrow N^{\nu}$ are non-dynamical \Rightarrow phase space is spanned by 12 variables $\left(\pi^{i k}, \gamma_{i k}\right)=6$ DoF. Hamiltonian

$$
H=\pi^{i k} \dot{\gamma}_{i k}-\mathcal{L}=N^{\mu} \mathcal{H}_{\mu}\left(\pi^{i k}, \gamma_{i k}\right)+m^{2} \mathcal{V}\left(N^{\mu}, \gamma_{i k}\right)
$$

with

$$
\mathcal{H}_{0}=\frac{1}{\sqrt{\gamma}}\left(2 \pi_{i k} \pi^{i k}-\left(\pi_{k}^{k}\right)^{2}\right)-\frac{1}{2} \sqrt{\gamma} R^{(3)}, \quad \mathcal{H}_{k}=-2 \nabla_{i}^{(3)} \pi_{k}^{i}
$$

Secondary constrints

$$
-\dot{p}_{N_{\mu}}=\frac{\partial \mathcal{H}}{\partial N^{\mu}}=\mathcal{H}_{\mu}\left(\pi^{i k}, \gamma_{i k}\right)+m^{2} \frac{\partial \mathcal{V}\left(N^{\mu}, \gamma_{i k}\right)}{\partial N^{\mu}}=0
$$

Degrees of freedom, $=0$

$$
\frac{\partial \mathcal{H}}{\partial N^{\mu}}=\mathcal{H}_{\mu}\left(\pi^{i k}, \gamma_{i k}\right)+m^{2} \frac{\partial \mathcal{V}\left(N^{\mu}, \gamma_{i k}\right)}{\partial N^{\mu}}=0
$$

- If $m=0$ this gives 4 constraints

$$
\mathcal{H}_{\mu}\left(\pi^{i k}, \gamma_{i k}\right)=0
$$

They are first class

$$
\left\{\mathcal{H}_{\mu}, \mathcal{H}_{\nu}\right\} \sim \mathcal{H}_{\alpha}
$$

and generate gauge symmetries, one can impose 4 gauge conditions, there remain 4 independent phase space variables
$12-4-4=4=2 \times(2 \mathrm{DoF}) \quad \Rightarrow \quad 2$ graviton polarizations
Energy vanishes on the constraint surface (up to a surface term)

$$
H=N^{\mu} \mathcal{H}_{\mu}=0
$$

Degrees of freedom,

$$
\frac{\partial \mathcal{H}}{\partial N^{\mu}}=\mathcal{H}_{\mu}\left(\pi^{i k}, \gamma_{i k}\right)+m^{2} \frac{\partial \mathcal{V}\left(N^{\mu}, \gamma_{i k}\right)}{\partial N^{\mu}}=0
$$

- If $m \neq 0$ this gives 4 equations for laps and shifts whose solution is $N^{\mu}\left(\pi^{i k}, \gamma_{i k}\right)$. No constraints arise \Rightarrow there are

$$
12=2 \times(6 \text { degrees of freedom })
$$

Inserting $N^{\mu}=N^{\mu}\left(\pi^{i k}, \gamma_{i k}\right)$ back to the Hamiltonian

$$
H=N^{\mu} \mathcal{H}_{\mu}+m^{2} \mathcal{V}\left(N^{\mu}, \gamma_{i k}\right)
$$

yields $H\left(\pi^{i k}, \gamma_{i k}\right)$ whose kinetic energy part is not positive-definite \Rightarrow the energy is unbounded from below. This is related to the sixth DoF=ghost. The ghost is removed on flat background by choosing $\alpha=1$, but it comes back on arbitrary background.

In non-linear Fierz-Pauli theory the VdVZ is cured but the ghost comes back /Boulware-Deser 1972/

Ghost-free massive gravity

Ghost-free massive gravity /2010/

One has

$$
\frac{\partial \mathcal{H}}{\partial N^{\mu}}=\mathcal{H}_{\mu}\left(\pi^{i k}, \gamma_{i k}\right)+m^{2} \frac{\partial \mathcal{V}\left(N^{\mu}, \gamma_{i k}\right)}{\partial N^{\mu}}=0
$$

with

$$
\mathcal{V}\left(N^{\mu}, \gamma_{i k}\right)=\frac{1}{8} \sqrt{-g}\left(\left[H^{2}\right]-[H]^{2}\right)+\text { higher order terms }
$$

One can choose the higher order terms such that

$$
\operatorname{rank}\left(\frac{\partial^{2} \mathcal{V}\left(N^{\mu}, \gamma_{i k}\right)}{\partial N^{\nu} \partial N^{\mu}}\right)=3
$$

\Rightarrow the 4 equations (\star) determine only 3 shifts $N^{k}=N^{k}\left(\pi^{i k}, \gamma_{i k}\right)$, the lapse N remains undetermined, the 4-th equation reduces to a constraint

$$
\mathcal{C}\left(\pi^{i k}, \gamma_{i k}\right)=0 \quad \Rightarrow \quad \dot{\mathcal{C}}=\{\mathcal{C}, H\} \equiv S=0
$$

The two constraints \mathcal{C}, \mathcal{S} remove one DoF, there remain 5 .

Explicitely

$$
\begin{gathered}
S=M_{\mathrm{Pl}}^{2} \int\left(\frac{1}{2} R-m^{2} \mathcal{U}\right) \sqrt{-g} d^{4} x \\
\mathcal{U}=b_{0}+b_{1} \sum_{a} \lambda_{a}+b_{2} \sum_{a<b} \lambda_{a} \lambda_{b}+b_{3} \sum_{a<b<c} \lambda_{a} \lambda_{b} \lambda_{c}+b_{4} \lambda_{0} \lambda_{1} \lambda_{2} \lambda_{3}
\end{gathered}
$$

where b_{k} are parameters and λ_{a} are eigenvalues of the matrix

$$
\gamma^{\mu}{ }_{\nu}=\sqrt{g^{\mu \alpha} f_{\alpha \nu}}
$$

/de Rham, Gabadadze, Tolley 2010/

A different parameter choice

$$
\begin{gathered}
S=M_{\mathrm{Pl}}^{2} \int\left(\frac{1}{2} R-m^{2} \mathcal{U}\right) \sqrt{-g} d^{4} x \\
\mathcal{U}=c_{0}+c_{1} \sum_{a} \lambda_{a}+c_{2} \sum_{a<b} \lambda_{\mathrm{a}} \lambda_{b}+c_{3} \sum_{a<b<c} \lambda_{a} \lambda_{b} \lambda_{c}+c_{4} \lambda_{0} \lambda_{1} \lambda_{2} \lambda_{3}
\end{gathered}
$$

where λ_{a} are eigenvalues of $\mathcal{K}^{\mu}{ }_{\nu}=\delta_{\nu}^{\mu}-\sqrt{g^{\mu \alpha} f_{\alpha \nu}}$
Flat space is a solution if $c_{0}=c_{1}=0, c_{1}=-1 / 2$ then

$$
\begin{aligned}
\mathcal{U} & =\frac{1}{2}\left(\left[\mathcal{K}^{2}\right]-[\mathcal{K}]^{2}\right) \\
& \left.+\frac{c_{3}}{3!}\left([\mathcal{K}]^{3}-3[\gamma][\mathcal{K}]^{2}\right)+2\left[\mathcal{K}^{3}\right]\right) \\
& \left.\left.+\frac{C_{4}}{4!}[\mathcal{K}]^{4}-6\left[\mathcal{K}^{2}\right][\mathcal{K}]^{2}\right)+8[\mathcal{K}]\left[\mathcal{K}^{3}\right]+3\left[\mathcal{K}^{2}\right]^{2}-6\left[\mathcal{K}^{4}\right]\right)
\end{aligned}
$$

In the simplest case $c_{3}=c_{4}=0 \Rightarrow$

$$
\mathcal{U}=\frac{1}{2}\left(\left[\mathcal{K}^{2}\right]-[\mathcal{K}]^{2}\right)
$$

Theory cutoff

$$
\begin{gathered}
S=M_{\mathrm{Pl}}^{2} \int\left(\frac{1}{2} R-m^{2} \mathcal{U}\right) \sqrt{-g} d^{4} x \\
\mathcal{U}=\frac{1}{8}\left(H_{\nu}^{\mu} H_{\mu}^{\nu}-\left(H_{\alpha}^{\alpha}\right)^{2}\right)+\ldots \\
H_{\nu}^{\mu}=\delta_{\nu}^{\mu}-g^{\mu \alpha} f_{\alpha \nu} \quad f_{\mu \nu}=\eta_{\alpha \beta} \partial_{\mu} \Phi^{\alpha} \partial_{\nu} \Phi^{\beta}
\end{gathered}
$$

Let
$g_{\mu \nu}=\eta_{\mu \nu}+\frac{1}{M_{\mathrm{Pl}}} h_{\mu \nu} \quad \partial_{\mu} \Phi^{\alpha}=\delta_{\mu}^{\alpha}+\frac{1}{m M_{\mathrm{Pl}}} \partial_{\mu} A^{\alpha}+\frac{1}{m^{2} M_{\mathrm{Pl}}^{2}} \partial_{\mu} \partial^{\alpha} \phi$
then expanding the kinetic term (similarly for $g_{\mu \nu}=g_{\mu \nu}^{0}+\frac{1}{M_{\mathrm{Pl}}} h_{\mu \nu}$)

$$
\frac{M_{\mathrm{Pl}}^{2}}{2} R \sqrt{-g}=\underbrace{\frac{1}{8}\left(-\partial_{\alpha} h_{\mu \nu} \partial^{\alpha} h^{\mu \nu}+\ldots\right)}_{\text {classical part }}+\underbrace{\frac{1}{M_{\mathrm{Pl}}} \mathcal{O}\left(h^{3}\right)+\ldots}_{\text {quantum corrections }}
$$

Quantum corrections become important only for $E \sim M_{\mathrm{Pl}}$.

Raising the cutoff

Expanding the potential gives (if $A_{\mu}=0$)

$$
\begin{aligned}
& m^{2} M_{\mathrm{Pl}}^{2} \mathcal{U} \sqrt{-g}=(\partial \phi)^{2} \\
+ & \underbrace{\frac{1}{\left(\Lambda_{5}\right)^{5}}\left(\left(\partial^{2} \phi\right)^{2}+\ldots\right)+\frac{1}{\left(\Lambda_{3}\right)^{3}}\left(h\left(\partial^{2} \phi\right)^{2}+\ldots\right)+\ldots}_{\text {quantum corrections }}
\end{aligned}
$$

The quantum corrections become important when $E \sim \Lambda_{5}$ where the lowest cutoff scale is

$$
\Lambda_{5}=\left(M_{\mathrm{Pl}} m^{4}\right)^{1 / 5} \sim 1 /\left(10^{11} \mathrm{~km}\right)
$$

One can adjust the higher order terms in \mathcal{U} such that all terms suppressed by Λ_{5} are total derivatives and vanish upon integration. The rest sums up to $\mathcal{U}_{\mathrm{dRGT}}$. This raises the cutoff to

$$
\Lambda_{3}=\left(M_{\mathrm{Pl}} m^{2}\right)^{1 / 3} \sim 1 /\left(10^{3} \mathrm{~km}\right)
$$

\Rightarrow reliable predictions within Solar System.

Galileons in the decoupling limit: $M_{\mathrm{Pl}} \rightarrow \infty, m \rightarrow 0$, $\Lambda_{3}=\left(M_{\mathrm{P} 1} \mathrm{~m}^{2}\right)^{1 / 3}=$ const.

$g_{\mu \nu}=\eta_{\mu \nu}+\frac{1}{M_{\mathrm{Pl}}} h_{\mu \nu} \quad \partial_{\mu} \Phi^{\alpha}=\delta_{\mu}^{\alpha}+\frac{1}{m M_{\mathrm{Pl}}} \partial_{\mu} A^{\alpha}+\frac{1}{m^{2} M_{\mathrm{Pl}}^{2}} \partial_{\mu} \partial^{\alpha} \phi$
with $h_{\mu \nu}=\mathbf{h}_{\mu \nu}+a_{1} \phi \eta_{\mu \nu}+a_{2} \partial_{\mu} \phi \partial_{\nu} \phi$ one obtains (if $A_{\mu}=0$)

$$
\mathcal{L}_{\Lambda_{3}}=\mathcal{L}_{0}\left(\mathbf{h}_{\mu \nu}\right)+\sum_{n=2}^{5} \frac{d_{n}}{\Lambda_{3}^{3(n-2)}} \mathcal{L}_{\mathrm{Gal}}^{(n)}[\phi]+\frac{q}{\Lambda_{3}^{6}} \mathbf{h}^{\mu \nu} X_{\mu \nu}^{(3)}
$$

where the Galileon terms (shift inv. $\phi \rightarrow \phi+\phi_{0}$) $/ \Pi_{\mu \nu}=\partial_{\mu \nu} \phi /$

$$
\begin{aligned}
\mathcal{L}^{(2)} & =(\partial \phi)^{2}, \\
\mathcal{L}^{(3)} & =(\partial \phi)^{2}[\Pi], \\
\mathcal{L}^{(4)} & =(\partial \phi)^{2}\left([\Pi]^{2}-\left[\Pi^{2}\right]\right), \\
\mathcal{L}^{(5)} & =(\partial \phi)^{2}\left([\Pi]^{3}-3[\Pi]\left[\Pi^{2}\right]+3\left[\Pi^{3}\right]\right)
\end{aligned}
$$

$X_{\mu \nu}^{(3)}=\left([\Pi]^{3}-3[\Pi]\left[\Pi^{2}\right]+3\left[\Pi^{3}\right]\right) \eta_{\mu \nu}-3\left([\Pi] \Pi_{\mu \nu}-2[\Pi] \Pi_{\mu \nu}^{2}-\left[\Pi^{2}\right] \Pi_{\mu \nu}+2 \Pi_{\mu \nu}^{3}\right)$

Galileon model of Vainshtein screening

$$
\begin{aligned}
& \mathcal{L}=-\frac{1}{2}(\partial \phi)^{2}-\frac{1}{\Lambda^{3}}(\partial \phi)^{2} \square \phi+\phi T \\
& \text { let } \quad T=-4 \pi M \delta^{(3)}(\vec{r})=-M \frac{\delta(r)}{r^{2}}
\end{aligned}
$$

then

$$
\frac{\phi^{\prime}}{r}+\frac{1}{\Lambda^{3}}\left(\frac{\phi^{\prime}}{r}\right)^{2}=\frac{M}{r^{3}}
$$

The Vainshtein radius is $r_{\mathrm{V}}=M^{1 / 3} / \Lambda$

$$
\frac{M}{r_{\mathrm{V}}^{3 / 2} \sqrt{r}} \underbrace{\leftarrow}_{r \ll r_{\mathrm{V}}} \phi^{\prime} \underbrace{\rightarrow}_{r \gg r_{\mathrm{V}}} \frac{M}{r^{2}}=\text { Newton force }
$$

for $r \ll r_{V}$ the force ratio

$$
\frac{\phi^{\prime}}{\text { Newton force }}=\left(\frac{r}{r_{\mathrm{V}}}\right)^{3 / 2} \ll 1
$$

\Rightarrow scalar graviton is screened at small distances.

Other massive gravities with 5 DoF

To have 5 DoF one needs constraints which arise if in

$$
\frac{\partial \mathcal{H}}{\partial N^{\mu}}=\mathcal{H}_{\mu}\left(\pi^{i k}, \gamma_{i k}\right)+m^{2} \frac{\partial \mathcal{V}\left(N^{\mu}, \gamma_{i k}\right)}{\partial N^{\mu}}=0
$$

one has

$$
\operatorname{det}\left(\frac{\partial^{2} \mathcal{V}\left(N^{\alpha}, \gamma_{i k}\right)}{\partial N^{\mu} \partial N^{\nu}}\right)=0
$$

This is the Monge-Ampere equation, all its solutions have been studied. Only the dRGT choice is Lorentz-invariant. Other solutions define theories which reduce in the weak field not to Fierz-Pauli

$$
\mathcal{U}=(1 / 8)\left(h_{\mu \nu} h^{\mu \nu}-\left(h_{\mu}^{\mu}\right)^{2}\right)
$$

but to a non-Lorentz-invariant potential

$$
\mathcal{U}=(1 / 8)\left(a h_{00}^{2}+b h_{0 k}^{2}+c h_{i k}^{2}+d h_{k k}^{2}+e h_{00} h_{0 k}+\ldots\right)
$$

which could be relevant in cosmology. They have a higher cutoff

$$
\Lambda_{2}=\sqrt{m M_{\mathrm{Pl}}} \sim 1 /(1 \mathrm{~mm})
$$

- Non-linear Fierz-Pauli models generically propagate 5+1 DoF, the extra DoF being the BD ghost rendering the theory unstable. For almost 40 years this was considered to be an inevitable obstacle.
- However, a careful analysis by dRGT has shown that there is a unique (up to 5 free parameters) way to choose the potential \mathcal{U} such that a constraints arise in the Hamiltonian formulation. The constraints remove one DoF. The resulting theory propagates 5 DoF and is called ghost-free.
- The dRGT theory is valid up to the energies of the order $\Lambda_{3}=\left(M_{\mathrm{Pl}} m^{2}\right)^{1 / 3} \sim 1 /\left(10^{3} \mathrm{~km}\right)$, so that it can be used to make predictions within Solar System.
- In the decoupling limit, $M_{\mathrm{Pl}} \rightarrow \infty, m \rightarrow 0$, fixed Λ_{3}, the theory describes linear gravitons interacting with non-linear vector and scalar. The scalar part describes the scalar graviton polarization and has the Galileon structure.
- The theory cutoff can be raised even higher, up to $\left.\Lambda_{2}=\sqrt{M_{\mathrm{Pl}} m} \sim 1 / \mathrm{mm}\right)$, via braking the Lorentz invariance.

Properties of the dRGT potential

Properties of the dRGT potential

$$
S=M_{\mathrm{Pl}}^{2} \int\left(\frac{1}{2} R-m^{2} \mathcal{U}\right) \sqrt{-g} d^{4} x
$$

with

$$
\mathcal{U}=\sum_{k=0}^{4} b_{k} \mathcal{U}_{k}(\gamma)
$$

where $\mathcal{U}_{k}(\gamma)$ are symmetric polynomials of eigenvalues λ_{a} of

$$
\gamma_{\nu}^{\mu}=\sqrt{g^{\mu \alpha} f_{\alpha \nu}}
$$

which means that

$$
\gamma_{\alpha}^{\mu} \gamma_{\beta}^{\alpha}=g^{\mu \alpha} f_{\alpha \nu}
$$

or

$$
\hat{\gamma}^{2}=\hat{g}^{-1} \hat{f}
$$

$$
\begin{aligned}
\mathcal{U}_{0}(\gamma) & =1 \\
\mathcal{U}_{1}(\gamma) & =\sum_{a} \lambda_{a}=[\gamma] \\
\mathcal{U}_{2}(\gamma) & =\sum_{a<b} \lambda_{a} \lambda_{b}=\frac{1}{2}\left([\gamma]^{2}-\left[\gamma^{2}\right]\right) \\
\mathcal{U}_{3}(\gamma) & \left.=\sum_{a<b<c} \lambda_{a} \lambda_{b} \lambda_{c}=\frac{1}{3!}\left([\gamma]^{3}-3[\gamma][\gamma]^{2}\right)+2\left[\gamma^{3}\right]\right) \\
\mathcal{U}_{4}(\gamma) & =\lambda_{0} \lambda_{1} \lambda_{2} \lambda_{3} \\
& \left.=\frac{1}{4!}\left([\gamma]^{4}-6\left[\gamma^{2}\right][\gamma]^{2}\right)+8[\gamma]\left[\gamma^{3}\right]+3\left[\gamma^{2}\right]^{2}-6\left[\gamma^{4}\right]\right)
\end{aligned}
$$

Varying the action

$$
S=M_{\mathrm{Pl}}^{2} \int\left(\frac{1}{2} R-m^{2} \sum_{k} b_{k} \mathcal{U}_{k}(\gamma)\right) \sqrt{-g} d^{4} x
$$

To vary this with respect to $g_{\mu \nu}$ one uses $\hat{\gamma}^{2}=\hat{g}^{-1} \hat{f}$ hence

$$
\delta \hat{\gamma} \hat{\gamma}+\hat{\gamma} \delta \hat{\gamma}=\delta \hat{g}^{-1} \hat{f}
$$

This is the matrix Sylvestre equation for $\delta \hat{\gamma}$ whose solution is extremely complex. Fortunately, \mathcal{U}_{k} depend only on $\left[\gamma^{n}\right] \equiv\left[\hat{\gamma}^{n}\right]$. One has

$$
\delta \hat{\gamma}+\hat{\gamma} \delta \hat{\gamma} \hat{\gamma}^{-1}=\delta \hat{g}^{-1} \hat{f} \hat{\gamma}^{-1}=\delta \hat{g}^{-1} \hat{g} \hat{\gamma}
$$

and taking the trace

$$
\delta[\hat{\gamma}]=\frac{1}{2}\left[\delta \hat{g}^{-1} \hat{g} \hat{\gamma}\right] \quad \text { or } \quad \delta \gamma_{\alpha}^{\alpha}=\frac{1}{2} \delta g^{\mu \alpha} g_{\alpha \beta} \gamma_{\mu}^{\beta} \equiv \frac{1}{2} \delta g^{\mu \alpha} \gamma_{\alpha \mu}
$$

Similarly,

$$
\delta\left(\gamma^{n}\right)^{\alpha}{ }_{\alpha}=\frac{n}{2} \delta g^{\mu \alpha} g_{\alpha \beta}\left(\gamma^{n}\right)^{\beta}{ }_{\mu} \equiv \frac{1}{2} \delta g^{\mu \alpha}\left(\gamma^{n}\right)_{\alpha \mu}
$$

One has $\left(\gamma^{n}\right)_{\mu \nu}=\left(\gamma^{n}\right)_{\nu \mu} /$ check this !/

Field equations

$$
G_{\mu \nu}=m^{2} T_{\mu \nu}
$$

with

$$
T_{\nu}^{\mu}=g^{\mu \alpha} T_{\alpha \nu}=\tau_{\nu}^{\mu}-\mathcal{U} \delta_{\nu}^{\mu}
$$

where

$$
\begin{aligned}
\tau_{\nu}^{\mu} & =\left\{b_{1} \mathcal{U}_{0}+b_{2} \mathcal{U}_{1}+b_{3} \mathcal{U}_{2}+b_{4} \mathcal{U}_{3}\right\} \gamma^{\mu}{ }_{\nu} \\
& -\left\{b_{2} \mathcal{U}_{0}+b_{3} \mathcal{U}_{1}+b_{4} \mathcal{U}_{2}\right\}\left(\gamma^{2}\right)^{\mu}{ }_{\nu} \\
& +\left\{b_{3} \mathcal{U}_{0}+b_{4} \mathcal{U}_{1}\right\}\left(\gamma^{3}\right)^{\mu}{ }_{\nu} \\
& -\left\{b_{4} \mathcal{U}_{0}\right\}\left(\gamma^{4}\right)^{\mu}{ }_{\nu}
\end{aligned}
$$

Equivalent form

Consider the characteristic polynomial

$$
\begin{aligned}
f_{\gamma}(\lambda) & \equiv \operatorname{det}(\hat{\gamma}-\lambda \hat{l})=\left(\lambda_{0}-\lambda\right)\left(\lambda_{1}-\lambda\right)\left(\lambda_{2}-\lambda\right)\left(\lambda_{3}-\lambda\right) \\
& =\lambda^{4}-\lambda^{3} \sum_{a} \lambda_{a}+\lambda^{2} \sum_{a<b} \lambda_{a} \lambda_{b}-\lambda \sum_{a<b<c} \lambda_{a} \lambda_{b} \lambda_{c}+\lambda_{0} \lambda_{1} \lambda_{2} \lambda_{3} \\
& =\mathcal{U}_{0} \lambda^{4}-\mathcal{U}_{1} \lambda^{3}+\mathcal{U}_{2} \lambda^{2}-\mathcal{U}_{3} \lambda+\mathcal{U}_{4}
\end{aligned}
$$

The Hamilton-Caly theorem tells that

$$
f_{\gamma}(\hat{\gamma})=\mathcal{U}_{0} \hat{\gamma}^{4}-\mathcal{U}_{1} \hat{\gamma}^{3}+\mathcal{U}_{2} \hat{\gamma}^{2}-\mathcal{U}_{3} \hat{\gamma}+\mathcal{U}_{4}=0
$$

therefore

$$
\begin{aligned}
\tau_{\nu}^{\mu} & =\left\{b_{1} \mathcal{U}_{0}+b_{2} \mathcal{U}_{1}+b_{3} \mathcal{U}_{2}\right\} \gamma^{\mu}{ }_{\nu} \\
& -\left\{b_{2} \mathcal{U}_{0}+b_{3} \mathcal{U}_{1}\right\}\left(\gamma^{2}\right)^{\mu}{ }_{\nu} \\
& +\left\{b_{3} \mathcal{U}_{0}\right\}\left(\gamma^{3}\right)^{\mu}{ }_{\nu} \\
& +\left\{b_{4} \mathcal{U}_{4}\right\} \delta^{\mu}{ }_{\nu} \equiv \sigma^{\mu}{ }_{\nu}+b_{4} \mathcal{U}_{4} \delta^{\mu}{ }_{\nu}
\end{aligned}
$$

Field equations - simplified form

$$
G_{\nu}^{\mu}=m^{2} T_{\nu}^{\mu}
$$

with

$$
T_{\nu}^{\mu}=\sigma_{\nu}^{\mu}-\left(\sum_{k=0}^{3} b_{k} \mathcal{U}_{k}\right) \delta_{\nu}^{\mu}
$$

where

$$
\begin{aligned}
\sigma_{\nu}^{\mu} & =\left\{b_{1} \mathcal{U}_{0}+b_{2} \mathcal{U}_{1}+b_{3} \mathcal{U}_{2}\right\} \gamma^{\mu}{ }_{\nu} \\
& -\left\{b_{2} \mathcal{U}_{0}+b_{3} \mathcal{U}_{1}\right\}\left(\gamma^{2}\right)^{\mu}{ }_{\nu} \\
& +\left\{b_{3} \mathcal{U}_{0}\right\}\left(\gamma^{3}\right)^{\mu}{ }_{\nu}
\end{aligned}
$$

One more representation of \mathcal{U}_{k}

$$
\begin{aligned}
\mathcal{U}_{0}(\gamma) & =\frac{1}{4!} \epsilon_{\mu \nu \rho \sigma} \epsilon^{\mu \nu \rho \sigma} \\
\mathcal{U}_{1}(\gamma) & =\frac{1}{3!} \epsilon_{\mu \nu \rho \sigma} \epsilon^{\alpha \nu \rho \sigma} \gamma_{\alpha}^{\mu} \\
\mathcal{U}_{2}(\gamma) & =\frac{1}{2!2!} \epsilon_{\mu \nu \rho \sigma} \epsilon^{\alpha \beta \rho \sigma} \gamma_{\alpha}^{\mu} \gamma^{\nu}{ }_{\beta} \\
\mathcal{U}_{3}(\gamma) & =\frac{1}{3!} \epsilon_{\mu \nu \rho \sigma} \epsilon^{\alpha \beta \gamma \sigma} \gamma_{\alpha}^{\mu} \gamma^{\nu}{ }_{\beta} \gamma^{\rho}{ }_{\gamma} \\
\mathcal{U}_{4}(\gamma) & =\frac{1}{4!} \epsilon_{\mu \nu \rho \sigma} \epsilon^{\alpha \beta \gamma \delta} \gamma_{\alpha}^{\mu} \gamma^{\nu}{ }_{\beta} \gamma^{\rho}{ }_{\gamma} \gamma_{\delta}^{\sigma}
\end{aligned}
$$

assuming that $\epsilon_{0123}=\epsilon^{0123}=1$.

Tetrad formulation

Let us introduce two tetrads e_{μ}^{a} and f_{μ}^{a} such that

$$
g_{\mu \nu}=\eta_{a b} e^{a}{ }_{\mu} e_{\nu}^{b} \quad f_{\mu \nu}=\eta_{a b} f_{\mu}^{a} f_{\nu}^{b}
$$

Let e_{a}^{μ} abd f_{a}^{μ} be the inverse tetrads, so that

$$
g^{\mu \nu}=\eta^{a b} e_{a}{ }^{\mu} e_{b}{ }^{\nu} \quad f^{\mu \nu}=\eta^{a b} f_{a}{ }^{\mu} f_{b}{ }^{\nu}
$$

and define $\Gamma_{\nu}^{\mu}=e_{a}{ }^{\mu} f_{\nu}^{a}$ and also

$$
\Gamma_{\mu \nu}=g_{\mu \alpha} \Gamma_{\nu}^{\alpha}=\eta_{a b} e^{a}{ }_{\mu} \underbrace{e_{\alpha}^{b} e_{c}^{\alpha}}_{\delta_{c}^{b}} f_{\nu}^{c}=\eta_{a c} e^{a}{ }_{\mu} f_{\nu}^{c} \equiv e^{a}{ }_{\mu} f_{a \nu}
$$

Let us assume that

$$
\begin{equation*}
\Gamma_{\mu \nu}=\Gamma_{\nu \mu} \Rightarrow e_{\mu}^{a} f_{a \nu}=e_{\nu}^{a} f_{a \mu} \Rightarrow e_{a}{ }^{\mu} f_{b \mu}=e_{b}{ }^{\mu} f_{a \mu} \tag{!}
\end{equation*}
$$

then

$$
\begin{gathered}
\Gamma_{\alpha}^{\mu} \Gamma_{\nu}^{\alpha}=e_{a}{ }^{\mu} f_{\alpha}^{a} e_{b}{ }^{\alpha} f_{\nu}^{b}=e^{a \mu} f_{a \alpha} e_{b}{ }^{\alpha} f_{\nu}^{b}=e^{a \mu} f_{b \alpha} e_{a}^{\alpha} f_{\nu}^{b}=g^{\mu \alpha} f_{\alpha \nu} \\
\Rightarrow \quad \Gamma^{\mu}{ }_{\nu}=\gamma^{\mu}{ }_{\nu}=\sqrt{g^{\mu \alpha} f_{\alpha \nu}}
\end{gathered}
$$

Useful identities

$$
\begin{aligned}
\frac{1}{4!} \epsilon_{a b c d} \epsilon^{\mu \nu \alpha \beta} e_{\mu}^{a} e_{\nu}^{b} e_{\alpha}^{c} e^{d} & =\left|e_{\mu}^{a}\right| \equiv e=\sqrt{-g} \\
\frac{1}{3!} \epsilon_{a b c d} \epsilon^{\mu \nu \alpha \beta} e_{\nu}^{b} e_{\alpha}^{c} e_{\beta}^{d} & =e e_{a}{ }^{\mu} \\
\frac{1}{2!} \epsilon_{a b c d} \epsilon^{\mu \nu \alpha \beta} e_{\alpha}^{c} e^{d} & =e\left(e_{a}{ }^{\mu} e_{b}{ }^{\nu}-e_{a}{ }^{\nu} e_{b}{ }^{\mu}\right)
\end{aligned}
$$

Yet one more representation of \mathcal{U}_{k}

$$
\begin{aligned}
\mathcal{U}_{0}(\gamma) \sqrt{-g} & =\frac{1}{4!} \epsilon_{a b c d} \epsilon^{\mu \nu \alpha \beta} e^{a}{ }_{\mu} e_{\nu}^{b} e_{\alpha}^{c} e^{d}{ }_{\beta}=e=\sqrt{-g} \\
\mathcal{U}_{1}(\gamma) \sqrt{-g} & =\frac{1}{3!} \epsilon_{a b c d} \epsilon^{\mu \nu \alpha \beta} e^{a}{ }_{\mu} e_{\nu}^{b} e^{c}{ }_{\alpha} f_{\beta}^{d}=e e_{d}^{\beta} f_{\beta}^{d}=e \Gamma^{\beta}{ }_{\beta}=e[\Gamma] \\
\mathcal{U}_{2}(\gamma) \sqrt{-g} & =\frac{1}{2!2!} \epsilon_{a b c d} \epsilon^{\mu \nu \alpha \beta} e^{a}{ }_{\mu} e^{b}{ }_{\nu} f_{\alpha}^{c} f_{\beta}^{d} \\
& =\frac{1}{2} e\left(e_{c}{ }^{\alpha} e_{d}^{\beta}-e_{c}{ }^{\beta} e_{d}{ }^{\alpha}\right) f_{\alpha}^{c} f_{\beta}^{d}=e \frac{1}{2}\left([\Gamma]^{2}-\left[\Gamma^{2}\right]\right) \\
\mathcal{U}_{3}(\gamma) \sqrt{-g} & =\frac{1}{3!} \epsilon_{a b c d} \epsilon^{\mu \nu \alpha \beta} e^{a}{ }_{\mu} f_{\nu}^{b} f_{\alpha}^{c} f_{\beta}^{d}=\left|f_{a}{ }^{\mu}\right| e^{a}{ }_{\mu} f_{a}{ }^{\mu} \equiv f\left[\Gamma^{-1}\right] \\
\mathcal{U}_{4}(\gamma) \sqrt{-g} & =\frac{1}{4!} \epsilon_{a b c d} \epsilon^{\mu \nu \alpha \beta} f_{\mu}^{a} f_{\nu}^{b} f_{\alpha}^{c} f_{\beta}^{d}=f
\end{aligned}
$$

Here $\left(\Gamma^{-1}\right)^{\mu}{ }_{\nu}=f_{a}{ }^{\mu} e^{a}{ }_{\mu}$ where $f_{a}{ }^{\mu}$ is the inverse of f_{μ}^{a}.
These expressions are equivalent to the previous ones provided that $\Gamma^{\mu}{ }_{\nu}=\gamma^{\mu}{ }_{\nu}$ which is the case if $\Gamma_{\mu \nu}=\Gamma_{\nu \mu}$.

Field equations - tetrad form

Varying with respect to $e^{a}{ }_{\mu}$ gives

$$
G_{\mu \nu}=m^{2} T_{\mu \nu}
$$

with

$$
\begin{aligned}
T_{\mu \nu} & =-b_{0} g_{\mu \nu}+b_{1}\left\{\Gamma_{\mu \nu}-[\Gamma] g_{\mu \nu}\right\} \\
& +b_{2} \frac{f}{e}\left\{\left(\Gamma^{-2}\right)_{\mu \nu}-\left[\Gamma^{-1}\right]\left(\Gamma^{-1}\right)_{\mu \nu}\right\} \\
& -b_{3} \frac{f}{e}\left(\Gamma^{-1}\right)_{\mu \nu}
\end{aligned}
$$

where
$\Gamma_{\mu \nu}=g_{\mu \alpha} \Gamma_{\nu}^{\alpha}, \quad\left(\Gamma^{-1}\right)_{\mu \nu}=g_{\mu \alpha}\left(\Gamma^{-1}\right)^{\alpha}{ }_{\nu}, \quad\left(\Gamma^{-2}\right)_{\mu \nu}=g_{\mu \alpha}\left(\Gamma^{-1}\right)^{\alpha}{ }_{\beta}\left(\Gamma^{-1}\right)^{\beta}{ }_{\nu}$
Since $T_{\mu \nu}=T_{\nu \mu}$ this generically implies that $\Gamma_{\mu \nu}=\Gamma_{\nu \mu}=\gamma_{\mu \nu}$. Therefore the tetrad formulation is generically equivalent to the square root formulation.
For special values of b_{k} one can have $T_{\mu \nu}=T_{\nu \mu}$ but $\Gamma_{\mu \nu} \neq \Gamma_{\nu \mu}$

$$
\begin{aligned}
S & =M_{\mathrm{Pl}}^{2} \int\left(\frac{1}{2} R-m^{2} \mathcal{U}\right) \sqrt{-g} d^{4} x \\
& =\int\left\{\frac{1}{4} \epsilon_{a b c d} R^{a b} \wedge e^{c} \wedge e^{d}\right. \\
& -m^{2} \epsilon_{a b c d}\left(\frac{b_{0}}{4!} e^{a} \wedge e^{b} \wedge e^{c} \wedge e^{d}\right. \\
& +\frac{b_{1}}{3!} e^{a} \wedge e^{b} \wedge e^{c} \wedge f^{d}+\frac{b_{2}}{2!2!} e^{a} \wedge e^{b} \wedge f^{c} \wedge f^{d} \\
& \left.\left.+\frac{b_{3}}{3!} e^{a} \wedge f^{b} \wedge f^{c} \wedge f^{d}+\frac{b_{4}}{4!} f^{a} \wedge f^{b} \wedge f^{c} \wedge f^{d}\right)\right\}
\end{aligned}
$$

with $e^{a}=e^{a}{ }_{\mu} d x^{\mu}$ and $f^{a}=f_{\mu}^{a} d x^{\mu}$. In the ADM formulation $d s_{g}^{2}=-N^{2} d t^{2}+\gamma_{i k}\left(d x^{i}+N^{i} d t\right)\left(d x^{k}+N^{k} d t\right)=-e^{0} \otimes e^{0}+\delta_{i k} e^{i} \otimes e^{k}$
$\Rightarrow N$ enters only $e^{0}=N d t$. The potential is linear in $e^{0} \Rightarrow$ it is liner in N so that $\mathcal{V}=\mathcal{U} \sqrt{-g}=A N+B \Rightarrow$ constraints $=5$ DoF.

Dimensional reconstruction

$$
\begin{gathered}
S_{\mathrm{dRGT}}=\frac{1}{2} M_{\mathrm{Pl}}^{2} \int\left(R+m^{2}\left([\mathcal{K}]^{2}-\left[\mathcal{K}^{2}\right]\right)\right) \sqrt{-g} d^{4} x, \quad \mathcal{K}=1-\sqrt{g^{-1} f} \\
S_{5}=\frac{1}{2} M_{5}^{3} \int R_{5} \sqrt{-g_{5}} d^{5} x \Rightarrow \quad 5 \mathrm{DoF} \\
d s_{5}^{2}=d y^{2}+\mathbf{g}_{\mu \nu} d x^{\mu} d x^{\nu}=d t^{2}+\eta_{a b} \mathbf{e}_{\mu}^{a} \mathbf{e}_{\nu}^{b} \\
S_{5}=\frac{1}{2} M_{5}^{2} \int_{y_{1}}^{y_{2}} d y \int\left(R(\mathbf{g})+[K]^{2}-\left[K^{2}\right]\right) \sqrt{-\mathbf{g}} d^{4} x \\
K_{\mu \nu}=\frac{1}{2} \partial_{y} \mathbf{g}_{\mu \nu}=\frac{1}{2} \eta_{a b}\left(\partial_{y} \mathbf{e}_{\mu}^{a} \mathbf{e}_{\nu}^{b}+\mathbf{e}_{\mu}^{a} \partial_{y} \mathbf{e}_{\nu}^{b}\right) \\
e_{\mu}^{a} \equiv \mathbf{e}_{\mu}^{a}\left(y_{1}\right), \quad f_{\mu}^{a} \equiv \mathbf{e}_{\mu}^{a}\left(y_{2}\right), \quad \partial_{y} \mathbf{e}_{\mu}^{a} \rightarrow \frac{\mathbf{e}_{\mu}^{a}\left(y_{2}\right)-\mathbf{e}_{\mu}^{a}\left(y_{1}\right)}{y_{2}-y_{1}} \equiv m\left(e_{\mu}^{a}-f_{\mu}^{a}\right) \\
K_{\mu \nu} \rightarrow-m\left(g_{\mu \nu}-\eta_{a b} e_{\mu}^{a} f_{\nu}^{a}\right), \quad K_{\nu}^{\mu} \rightarrow-m(\delta_{\nu}^{\mu}-\underbrace{e^{\mu}}_{\sqrt{g^{\mu \mu \alpha} f_{\alpha \nu}} f_{\nu}^{a}})=-m \mathcal{K}_{\nu}^{\mu}
\end{gathered}
$$

Bigravity

Bigravity

$$
\begin{aligned}
S & =\frac{1}{2 \kappa_{1}} \int R(g) \sqrt{-g} d^{4} x+\frac{1}{2 \kappa_{2}} \int R(f) \sqrt{-f} d^{4} x \\
& -\frac{m^{2}}{\kappa_{1}+\kappa_{2}} \int \mathcal{U} \sqrt{-g} d^{4} x+S_{\mathrm{mat}}\left[g, \Psi_{g}\right]+S_{\mathrm{mat}}\left[f, \Psi_{f}\right]
\end{aligned}
$$

with the same potential as before

$$
\mathcal{U}=b_{0}+b_{1} \sum_{a} \lambda_{a}+b_{2} \sum_{a<b} \lambda_{a} \lambda_{b}+b_{3} \sum_{a<b<c} \lambda_{a} \lambda_{b} \lambda_{c}+b_{4} \lambda_{0} \lambda_{1} \lambda_{2} \lambda_{3}
$$

There is interchange symmetry

$$
g_{\mu \nu} \leftrightarrow f_{\mu \nu} \quad \kappa_{1} \leftrightarrow \kappa_{2} \quad b_{k} \leftrightarrow b_{4-k} \quad T_{\mu \nu}^{\mathrm{mat}}(g) \leftrightarrow T_{\mu \nu}^{\mathrm{mat}}(f)
$$

7 DoF $=$ one massive + one massless graviton

$$
\begin{aligned}
G_{\mu \nu}(g) & =m^{2} \cos ^{2} \eta T_{\mu \nu}(g, f)+\kappa_{1} T_{\mu \nu}^{\mathrm{mat}}(g) \\
G_{\mu \nu}(f) & =m^{2} \sin ^{2} \eta \mathcal{T}_{\mu \nu}(g, f)+\kappa_{2} T_{\mu \nu}^{\mathrm{mat}}(f)
\end{aligned}
$$

with $\tan ^{2} \eta=\kappa_{2} / \kappa_{1}$ and

$$
\begin{aligned}
& T_{\nu}^{\mu}=g^{\mu \alpha} T_{\alpha \nu}=\tau_{\nu}^{\mu}-\mathcal{U} \delta_{\nu}^{\mu} \\
& \mathcal{T}_{\nu}^{\mu}=f^{\mu \alpha} \mathcal{T}_{\alpha \nu}=-\frac{\sqrt{-g}}{\sqrt{-f}} \tau_{\nu}^{\mu}
\end{aligned}
$$

with

$$
\begin{aligned}
\tau_{\nu}^{\mu} & =\left\{b_{1} \mathcal{U}_{0}+b_{2} \mathcal{U}_{1}+b_{3} \mathcal{U}_{2}+b_{4} \mathcal{U}_{3}\right\} \gamma^{\mu}{ }_{\nu} \\
& -\left\{b_{2} \mathcal{U}_{0}+b_{3} \mathcal{U}_{1}+b_{4} \mathcal{U}_{2}\right\}\left(\gamma^{2}\right)^{\mu} \\
& +\left\{b_{3} \mathcal{U}_{0}+b_{4} \mathcal{U}_{1}\right\}\left(\gamma^{3}\right)^{\mu}{ }_{\nu} \\
& -\left\{b_{4} \mathcal{U}_{0}\right\}\left(\gamma^{4}\right)^{\mu}{ }_{\nu}
\end{aligned}
$$

In the limit where $\kappa_{2} \rightarrow 0$ and $f_{\mu \nu} \rightarrow \eta_{\mu \nu}$ the theory reduces to the dRGT massive gravity $\Rightarrow \mathrm{dRGT}$ is contained in the bigravity.

Let us require the flat space $g_{\mu \nu}=f_{\mu \nu}=\eta_{\mu \nu}$ to be a solution. This imposes two conditions $T_{\mu \nu}=0, \mathcal{T}_{\mu \nu}=0$. Requiring in addition m to be the FP mass of gravitons in flat space gives a third condition. These three conditions are fulfilled by adjusting the $5 b_{k}$'s as $b_{k}\left(c_{3}, c_{4}\right)$

$$
\begin{aligned}
& b_{0}=4 c_{3}+c_{4}-6, \quad b_{1}=3-3 c_{3}-c_{4}, \quad b_{2}=2 c_{3}+c_{4}-1 \\
& b_{3}=-\left(c_{3}+c_{4}\right), \quad b_{4}=c_{4}
\end{aligned}
$$

Small fluctuations $g_{\mu \nu}=\eta_{\mu \nu}+\delta g_{\mu \nu}$ and $f_{\mu \nu}=\eta_{\mu \nu}+\delta f_{\mu \nu}$

$$
h_{\mu \nu}^{\mathrm{m}}=\cos \eta \delta g_{\mu \nu}+\sin \eta \delta f_{\mu \nu} \quad h_{\mu \nu}^{0}=\cos \eta \delta f_{\mu \nu}-\sin \eta \delta g_{\mu \nu}
$$

fulfill

$$
\begin{aligned}
(\square+\ldots) h_{\mu \nu}^{\mathrm{m}} & =m^{2}\left(h_{\mu \nu}^{\mathrm{m}}-h^{\mathrm{m}} \eta_{\mu \nu}\right) \\
(\square+\ldots) h_{\mu \nu}^{0} & =0
\end{aligned}
$$

Cosmologies and black holes

- Proportional solutions
- Non-bidiagonal solutions
- Hairy solutions

I. Proportional solutions

$f_{\mu \nu}=C^{2} g_{\mu \nu} \Rightarrow G_{\nu}^{\mu}(g)+\Lambda_{g}(C) \delta_{\nu}^{\mu}=0, \quad G_{\nu}^{\mu}(f)+\Lambda_{f}(C) \delta_{\nu}^{\mu}=0$ where, with $P_{m}=b_{m}+2 b_{m+1} C+b_{m+2} C^{2}$,

$$
\Lambda_{g}=m^{2} \cos ^{2} \eta\left(P_{0}+C P_{1}\right), \quad \Lambda_{f}=m^{2} \frac{\sin ^{2} \eta}{C^{3}}\left(P_{1}+C P_{2}\right)
$$

/show this/ Since $G_{\nu}^{\mu}(f)=G_{\nu}^{\mu}(g) / C^{2} \Rightarrow \Lambda_{g}=C^{2} \Lambda_{f} \Rightarrow$ quartic algebraic equation for C.

- Fours roots $C=\left\{C_{k}\right\}$
- $\Lambda_{g}\left(C_{k}\right)$ can be positive, negative or zero, depending on C_{k}. If $b_{k}=b_{k}\left(c_{3}, c_{4}\right)$ then $C=1$ is a root and $\Lambda_{g}(1)=0$.
- If $\Lambda_{g}>0$ then there is de Sitter solution \Rightarrow late time acceleration. Since one has to have $\Lambda_{g} \sim 1 / H^{2} \Rightarrow$ either $m \sim 1 / H$ or $\cos ^{2} \eta\left(P_{0}+C P_{1}\right) \sim 1 / H^{2}$.
- If there is matter then proportional solutions are possible if only the matter is fine-tuned such that $T_{\nu}^{\mu}=\mathcal{T}_{\nu}^{\mu} / C^{2}$. However, matter becomes negligible at late times \Rightarrow proportional de Sitter is the late time attractor for generic cosmologies $=$ inhomogeneous, anisotropic, with any matter.
- Proportional black holes are the same as in GR = Schwarzschild (Kerr)-(anti)-de Sitter. However, when perturbed, solutions show a mild $(\sim m)$ instability due to the scalar graviton polarization mode.
- Proportional solutions exist only in bigravity, not in massive gravity with a fixed f-metric.

$$
T_{\nu}^{\mu}=\tau_{\nu}^{\mu}-\mathcal{U} \delta_{\nu}^{\mu} \quad \mathcal{T}_{\nu}^{\mu}=-\frac{\sqrt{-g}}{\sqrt{-f}} \tau_{\nu}^{\mu}
$$

with $\tau^{\mu}{ }_{\nu}=\sigma^{\mu}{ }_{\nu}+b_{4} \mathcal{U}_{4} \delta^{\mu}{ }_{\nu}$

$$
\begin{aligned}
\sigma^{\mu}{ }_{\nu} & =\left\{b_{1} \mathcal{U}_{0}+b_{2} \mathcal{U}_{1}+b_{3} \mathcal{U}_{2}\right\} \gamma^{\mu}{ }_{\nu} \\
& -\left\{b_{2} \mathcal{U}_{0}+b_{3} \mathcal{U}_{1}\right\}\left(\gamma^{2}\right)^{\mu}{ }_{\nu}+\left\{b_{3} \mathcal{U}_{0}\right\}\left(\gamma^{3}\right)^{\mu}{ }_{\nu}
\end{aligned}
$$

Let us require that $\sigma^{\mu}{ }_{\nu}=0$ then

$$
T_{\nu}^{\mu}=-\Lambda_{g} \delta_{\nu}^{\mu} \quad \mathcal{T}_{\nu}^{\mu}=-\Lambda_{f} \delta_{\nu}^{\mu}
$$

with

$$
\Lambda_{g}=\sum_{k=0}^{3} b_{k} \mathcal{U}_{k} \quad \Lambda_{f}=b_{4} \frac{\sqrt{-g}}{\sqrt{-f}} \mathcal{U}_{4}=b_{4}
$$

and the field equations require these to be constants.

II. Non-bidiagonal solutions

Common SO(3)

$$
\begin{aligned}
d s_{g}^{2} & =-A d t^{2}+\frac{d r^{2}}{B}+r^{2} d \Omega^{2} \\
d s_{f}^{2} & =-C d T^{2}+\frac{d U^{2}}{D}+U^{2} d \Omega^{2}
\end{aligned}
$$

A, B depend on t, r while C, D depend on $T(t, r), U(t, r)$. Field equations reduce to

$$
U=C r \quad \text { where } \quad b_{1}+2 b_{2} C+b_{3} C^{2}=0
$$

-

$$
\begin{gathered}
G_{\mu \nu}(g)+\Lambda_{g} g_{\mu \nu}=0 \quad G_{\mu \nu}(f)+\Lambda_{f} f_{\mu \nu}=0 \\
\Lambda_{g}=m^{2} \cos ^{2} \eta\left(b_{0}+2 b_{1} C+b_{2} C^{2}\right) \\
\Lambda_{f}=m^{2} \frac{\sin ^{2}}{C^{2}} \eta\left(b_{2}+2 b_{3} C+b_{4} C^{2}\right)
\end{gathered}
$$

- A differential condition for $T(t, r)$.

Explicit non-bidiagonal solutions

Schwarzschild-(anti)-de Sitter
$d s_{g}^{2}=-\Sigma d t^{2}+\frac{d r^{2}}{\Sigma}+r^{2} d \Omega^{2}, \quad \Sigma=1-\frac{2 M_{g}}{r}-\frac{\Lambda_{g}}{3} r^{2}$
$d s_{f}^{2}=C^{2}\left(-\Delta d T^{2}+\frac{d r^{2}}{\Delta}+r^{2} d \Omega^{2}\right), \quad \Delta=1-\frac{2 M_{f}}{r}-\frac{C^{2} \Lambda_{f}}{3} r^{2}$

$$
\frac{\Delta}{\Sigma}\left(\partial_{t} T\right)^{2}+\frac{\Delta \Sigma}{\Delta-\Sigma}\left(\partial_{r} T\right)^{2}=1
$$

infinitely many inequivalent solutions, the simplest one

$$
T=t+\int\left(\frac{1}{\Sigma}+\frac{1}{\Delta}\right) d r
$$

- If $M_{g}=M_{f}=0 \Rightarrow$ de Sitter cosmology, one can add matter.
- If $M_{g} \neq 0, M_{f} \neq 0 \Rightarrow$ black holes.
- If $M_{f}=0$ and $\eta \rightarrow 0$ then $\Lambda_{f} \sim \sin ^{2} \eta \rightarrow 0 \Rightarrow$ f-metric is flat \Rightarrow all known cosmologies and black holes in massive gravity
- Same linear perturbations as in $\mathrm{GR} \Rightarrow$ scalar graviton is strongly bound

Massive gravity cosmologies

Cosmological constant $\Lambda=m^{2}\left(b_{0}+2 b_{1} C+b_{2} C^{2}\right)$ where $b_{1}+2 b_{2} C+b_{3} C^{2}=0$. The g -metric is de Sitter, f is flat

$$
\begin{aligned}
d s_{g}^{2} & =\frac{3}{\Lambda}\left\{-d t^{2}+d r^{2}+d x^{2}+d y^{2}+d z^{2}\right\} \\
1 & =-t^{2}+r^{2}+x^{2}+y^{2}+z^{2} \equiv-t^{2}+r^{2}+R^{2} \\
d s_{f}^{2} & =\frac{3 C^{2}}{\Lambda}\left\{-d T^{2}+d x^{2}+d y^{2}+d z^{2}\right\}
\end{aligned}
$$

whear the Stuckelberg field $T(t, r)$ fulfills

$$
\left(\partial_{t} T\right)^{2}-\left(\partial_{r} T\right)^{2}=1
$$

Infinitely many solution. Only one solution $T=t$ has been studied. When expressed in different slicings reads

Different slicings

- flat slicing $t=\sinh \tau+\frac{\rho^{2}}{2} e^{\tau}, r=\cosh \tau-\frac{\rho^{2}}{2} e^{\tau}, R=\rho e^{\tau}$

$$
d s_{g}^{2}=\frac{3}{\Lambda}\left(-d \tau^{2}+e^{2 \tau}\left(d \rho^{2}+\rho^{2} d \Omega^{2}\right)\right)
$$

- close slicing $t=\sinh \tau, r=\cosh \tau \cos \rho, R=\cosh \tau \sin \rho$

$$
d s_{g}^{2}=\frac{3}{\Lambda}\left(-d \tau^{2}+\cos ^{2} \tau\left(d \rho^{2}+\sinh ^{2} \rho d \Omega^{2}\right)\right)
$$

In both cases f-metric is not diagonal and depends on ρ

- close slicing $t=\sinh \tau \cosh \rho, r=\cosh \tau, R=\sinh \tau \sinh \rho$

$$
\begin{aligned}
d s_{g}^{2} & =\frac{3}{\Lambda}\left(-d \tau^{2}+\sinh ^{2} \tau\left(d \rho^{2}+\sinh ^{2} \rho d \Omega^{2}\right)\right) \\
d s_{f}^{2} & =\frac{3 C^{2}}{\Lambda}\left(-\cosh ^{2} \tau d \tau^{2}+\sinh ^{2} \tau\left(d \rho^{2}+\sinh ^{2} \rho d \Omega^{2}\right)\right)
\end{aligned}
$$

The two metrics share the same symmetries - "the only genuinely homogeneous and isotropic dRGT cosmology". However, it is unstable /Mukohyama et al/

- The only solutions which exist both in bigravity and massive gravity with fixed f. Exhaust all massive gravity solutions.
- Comprise an infinite family. The g-metric is the same s in GR - dS(AdS) or Schwarzschild-(A)dS - but the Stuckelberg scalars are different.
- For all of them the scalar graviton is strongly bound - the linear perturbations are the same as in GR. The difference arises only in higher orders.
- Poorly understood. Only one solution (open FRLW cosmology of Mukohyama) was thoroughly studied and a ghost was detected at the third perturbation order. It is unclear if this result extends higher orders.

III. "Hairy" cosmologies

FLRW cosmologies with bidiagonal metrics

$$
\begin{array}{ll}
d s_{g}^{2}=-d t^{2}+e^{2 \Omega}\left(\frac{d r^{2}}{1-k r^{2}}+r^{2} d \Omega^{2}\right) \quad & / k=0, \pm 1 / \\
d s_{f}^{2}=-\mathcal{A}^{2} d t^{2}+e^{2 \mathcal{W}}\left(\frac{d r^{2}}{1-k r^{2}}+r^{2} d \Omega^{2}\right) &
\end{array}
$$

Friedmann equations $/ \xi=e^{\mathcal{W}-\Omega} /$

$$
\begin{gathered}
\dot{\Omega}^{2}=\frac{\Lambda_{g}+\rho_{g}}{3}-\frac{k}{4} e^{-2 \Omega} \quad \frac{\dot{\mathcal{W}}^{2}}{\mathcal{A}^{2}}=\frac{\Lambda_{f}+\rho_{f}}{3}-\frac{k}{4} e^{-2 \mathcal{W}} \\
\Lambda_{g}=m^{2} \cos ^{2} \eta\left(b_{0}+3 b_{1} \xi+3 b_{2} \xi^{2}+b_{3} \xi^{3}\right) \\
\Lambda_{f}=m^{2} \frac{\sin ^{2} \eta}{\xi^{3}}\left(b_{1}+3 b_{2} \xi+3 b_{3} \xi^{2}+b_{4} \xi^{3}\right)
\end{gathered}
$$

Conservation condition $\left[\left(e^{\mathcal{W}}\right)^{\cdot}-\mathcal{A}\left(e^{\Omega}\right)^{\cdot}\right]\left(b_{1}+2 b_{2} \xi+b_{3} \xi^{2}\right)=0$

$$
\Rightarrow \quad \xi^{2}\left(\Lambda_{f}+\rho_{f}\right)=\Lambda_{g}+\rho_{g} \quad(\star) \quad \Rightarrow \quad \xi=\xi\left(\rho_{g}, \rho_{f}\right)=\xi(\Omega)
$$

Solutions

With $\mathbf{a}=e^{\Omega}$ equations reduce to

$$
\dot{\mathbf{a}}^{2}+\mathbf{U}(\mathbf{a})=-k
$$

where $\mathbf{U}(\mathbf{a})$ is defined by roots of the algebraic relation (\star)

Various solutions, at late times generically approaching the proportional de Sitter.

Anisotropic cosmologies

/Kei-ichi Maeda, M.S.V/

Bianchi class A types

$$
\begin{aligned}
& d s_{g}^{2}=-d t^{2}+d l_{g}^{2} \quad d s_{f}^{2}=-\mathcal{A}^{2}(t) d t^{2}+d l_{f}^{2} \\
& d l_{g}^{2}=e^{2 \Omega}\left(e^{2 \beta_{+}+2 \sqrt{2} \beta_{-}}\left(\omega^{1}\right)^{2}+e^{2 \beta_{+}-2 \sqrt{2} \beta_{-}}\left(\omega^{2}\right)^{2}+e^{-4 \beta_{+}}\left(\omega^{3}\right)^{2}\right) \\
& d l_{f}^{2}=e^{2 \mathcal{W}}\left(e^{2 \mathcal{B}_{+}+2 \sqrt{2} \mathcal{B}_{-}}\left(\omega^{1}\right)^{2}+e^{2 \mathcal{B}_{+}-2 \sqrt{2} \mathcal{B}_{-}}\left(\omega^{2}\right)^{2}+e^{-4 \mathcal{B}_{+}}\left(\omega^{3}\right)^{2}\right) \\
& \left\langle\omega^{a}, e_{b}\right\rangle=\delta_{b}^{a}\left[e_{a}, e_{b}\right]=C_{a b}^{c} e_{c} \Rightarrow \text { Bianchi I,II,VI,VII,VIII,IX } \\
& \text { Initial data at } t=t_{0}: \text { an anisotropic deformation of a finite size } \\
& \text { FLRW. f-sector is empty, g-sector contains radiation }+ \text { dust. AII } \\
& \text { solutions rapidly approach proportional backgrounds with constant } \\
& H=\dot{\Omega} \text { and constant non-zero anisotropies = late time attractor. }
\end{aligned}
$$

Solutions

$\dot{\Omega}$ for all Bianchi types (left) and anisotropy parameters for Bianchi IX (right). At late time anisotropies oscillate around constant values $\beta_{ \pm}=\beta_{ \pm}(\infty)+$ const. $\times e^{-3 H t} \cos (\omega t)$. The shear energy

$$
\dot{\beta}_{+}^{2}+\dot{\beta}_{-}^{2} \sim e^{-3 H} \sim 1 / \mathbf{a}^{3}
$$

behaves as a non-relativistic (dark ?) matter, while in GR it is $\sim 1 / \mathbf{a}^{6}$.

Chaos

In the past solutions show singularity where e^{Ω} and $e^{\mathcal{W}}$ vanish, anisotropies oscillate near singularity.

Sequence of Kasner-type periods during which eigenvalues of the three-metric

$$
\begin{aligned}
& \alpha_{a} \sim t^{p_{a}} \text { with } p_{1}+p_{2}+p_{3}=p_{1}^{2}+p_{2}^{2}+p_{3}^{1} \\
& 1 / \mathbf{a}^{6} \leftarrow \text { shear energy } \dot{\beta}_{+}^{2}+\dot{\beta}_{-}^{2} \rightarrow 1 / \mathbf{a}^{3}
\end{aligned}
$$

- Exist only in bigravity, comprise a large family. At late times approach the proportional de-Sitter with constant anisotropies - late time acceleration.
- Early time behaviours depends crucially on values of b_{k}, m and η.
- For certain parameter values can be matched to the primary inflationary stage \Rightarrow candidates for describing physical cosmology.

Akrami, Kovisto, Amendola, Solomon, Flanders, Mortshel,

Hairy black holes

M.S.V., Phys.Rev. D85 (2012) 124043

Brito, Cardoso, Pani, Phys.Rev. D88 (2013) 064006

Static bidiagonal metrics

$$
\begin{aligned}
d s_{g}^{2} & =-Q^{2} d t^{2}+\frac{R^{\prime 2}}{N^{2}} d r^{2}+R^{2} d \Omega^{2} \\
d s_{f}^{2} & =-q^{2} d t^{2}+\frac{U^{\prime 2}}{Y^{2}} d r^{2}+U^{2} d \Omega^{2}
\end{aligned}
$$

6 functions Q, N, R, q, Y, U depend on r, one can impose 1 gauge condition $(R=r) \Rightarrow 5$ independent equations

$$
\begin{aligned}
G_{0}^{0}(g) & =\kappa_{1} T_{0}^{0}, \\
G_{r}^{r}(g) & =\kappa_{1} T_{r}^{r}, \\
G_{0}^{0}(f) & =\kappa_{2} \mathcal{T}_{0}^{0}, \\
G_{r}^{r}(f) & =\kappa_{2} \mathcal{T}_{r}^{r}, \\
T_{r}^{r \prime} & +\frac{Q^{\prime}}{Q}\left(T_{r}^{r}-T_{0}^{0}\right)+\frac{2}{r}\left(T_{\vartheta}^{\vartheta}-T_{r}^{r}\right)=0 .
\end{aligned}
$$

Event horizon at $r=r_{h}$

Equations reduce to a dynamical system for N, Y, U, one has
$N^{2}=\sum_{n \geq 1} a_{n}\left(r-r_{h}\right)^{n}, \quad Y^{2}=\sum_{n \geq 1} b_{n}\left(r-r_{h}\right)^{n}, \quad U=u_{h}+\sum_{n \geq 1} c_{n}\left(r-r_{h}\right)^{n}$

- Regular horizon is common for both metrics
- Black hole solutions comprise a two-parameter set labeled by r_{h} and $u_{h} \Rightarrow$ horizon radii measured by the two metric.
- Horizon surface gravities and temperatures are the same for both metrics.

Black holes with massive graviton hair

- For generic values of r_{h}, u_{h} solutions either show a curvature singularity at a finite distance away from r_{h} or approach asymptotically the AdS space /M.S.V. 2012/
- For specially fine-tuned r_{h}, u_{h} there are asymptotically flat black holes with $r_{h} \sim 1 / m \Rightarrow$ they are cosmologically large /Brito, Cardoso, Pani 2013/

Wormholes

/S.V.Sushkov and M.S.V. 2015/

Wormholes - bridges between universes

$$
d s^{2}=-Q^{2}(r) d t^{2}+d r^{2}+R^{2}(r)\left(d \vartheta^{2}+\sin ^{2} \vartheta d \varphi^{2}\right),
$$

- $G_{\mu \nu}=8 \pi G T_{\mu \nu} \Rightarrow \rho+p<0, p<0 \Rightarrow$ violation of the null energy conditions \Rightarrow vacuum polarization, or exotic matter (phantoms), or gravity modifications (Gauss-Bonnet, braneworld).
- The structure of $T_{\mu \nu}$ and $\mathcal{T}_{\mu \nu}$ in the bigravity theory generically violates the N.E.C. /Visser et al, 2012/

$$
\begin{gathered}
d s_{g}^{2}=-Q^{2} d t^{2}+d r^{2}+R^{2} d \Omega^{2} \\
d s_{f}^{2}=-q^{2} d t^{2}+\frac{U^{\prime 2}}{Y^{2}} d r^{2}+U^{2} d \Omega^{2} \\
Y=Y_{1} r+Y_{3} r^{3}+\ldots \quad Q=Q_{0}+Q_{2} r^{2}+\ldots \quad R=h+R_{2} r^{2}+\ldots \\
q=q_{0}+q_{2} r^{2}+\ldots \quad U=u h+U_{2} r^{2}+\ldots
\end{gathered}
$$

Expanding the field equations gives in the leading order algebraic equations for Q_{0} and q_{0}, whose solution exists if only $h \geq 1 / \sqrt{3}$ (in units of $1 / m$) \Rightarrow wormholes are cosmologically large.

Wormhole solutions

The g-metric is globally regular and asymptotically AdS, has two AdS boundaries. The f-metric shows a Killing horizon at the point where q vanishes. The g-geodesics oscillate around $r=0 \Rightarrow$ throat is traversable.

- If the ghost-free bigravity indeed describes the world, then the astrophysical black holes are the same as in GR, up to a tiny ($\sim m$) effect of accretion of massive modes.
- Theory also admits black holes with massive graviton hair. The are generically asymptotically AdS and exceptionally asymptotically flat (but very large).
- Theory admits Lorentzian wormholes. No exotic matter is needed. Wormholes are cosmologically large \Rightarrow in principle we all might live inside a wormhole.

Superluminality

- Characteristic surfaces of the dRGT massive gravity theory can be locally timelike \Rightarrow superluminal signals.
- This has also been detected in the Galileon models.
- It is unclear if this implies aucausality. It is also unclear if timelike characteristics can be global.

Energy

/M.S.V./

$$
\begin{aligned}
d s_{g}^{2} & =-N^{2} d t^{2}+\frac{1}{\Delta^{2}}(d r+\beta d t)^{2}+R^{2} d \Omega^{2} \\
d s_{f}^{2} & =-d t^{2}+d r^{2}+r^{2} d \Omega^{2}
\end{aligned}
$$

N, β, R, Δ depend on t, r. Lapse N and shift β are non-dynamical.
Dynamical variables are Δ, R and their momenta

$$
p_{\Delta}=\frac{\partial \mathcal{L}}{\partial \dot{\Delta}}, \quad p_{R}=\frac{\partial \mathcal{L}}{\partial \dot{R}},
$$

Phase space is 4-dimensional, spanned by $\left(R, \Delta, p_{R}, p_{\Delta}\right)$.

Hamiltonian

$$
H=N \mathcal{H}_{0}+\beta \mathcal{H}_{r}+m^{2} \mathcal{V}
$$

where

$$
\begin{aligned}
\mathcal{H}_{0} & =\frac{\Delta^{3}}{4 R^{2}} p_{\Delta}^{2}+\frac{\Delta^{2}}{2 R} p_{\Delta} p_{R}+\Delta R R^{\prime 2}+2 R\left(\Delta R^{\prime}\right)^{\prime}-\frac{1}{\Delta} \\
\mathcal{H}_{r} & =\Delta_{\Delta}^{\prime}+2 \Delta^{\prime} p_{\Delta}+R^{\prime} p_{R}
\end{aligned}
$$

and the potential

$$
\mathcal{V}=\frac{N R^{2} P_{0}}{\Delta}+\frac{R^{2} P_{1}}{\Delta} \sqrt{(\Delta N+1)^{2}-\beta^{2}}+R^{2} P_{2}
$$

with

$$
P_{n}=b_{n}+2 b_{n+1} \frac{r}{R}+b_{n+2} \frac{r^{2}}{R^{2}}
$$

Number of DoF

$$
\begin{aligned}
& \frac{\partial \mathcal{H}}{\partial N}=\mathcal{H}_{0}+m^{2} \frac{\partial \mathcal{V}}{\partial N}=0, \\
& \frac{\partial \mathcal{H}}{\partial \beta}=\mathcal{H}_{r}+m^{2} \frac{\partial \mathcal{V}}{\partial \beta}=0 .
\end{aligned}
$$

- If $m=0 \Rightarrow 2$ first class constraints, $\mathcal{H}_{0}=0$ and $\mathcal{H}_{r}=0 \Rightarrow$ $4-2-2=0$ DoF \Rightarrow no dynamics $=$ Birkhoff theorem
- If $m \neq 0 \Rightarrow$ the second equations determines β, while the fist one gives the constraint

$$
\mathcal{C}\left(\Delta, R, p_{\Delta}, p_{R}\right)=0
$$

Hamiltonian and constraints

$$
H=\mathcal{E}+N \mathcal{C}, \quad \mathcal{E}=\frac{Y}{\Delta}+m^{2} R^{2} P_{2}
$$

with

$$
\mathcal{C}=\mathcal{H}_{0}+Y+m^{2} \frac{R^{2} P_{0}}{\Delta} \quad \text { with } \quad Y \equiv \sqrt{\left(\Delta \mathcal{H}_{r}\right)^{2}+\left(m^{2} R^{2} P_{1}\right)^{2}}
$$

Secondary constraint

$$
\begin{aligned}
\mathcal{S} & =\{\mathcal{C}, H\}=\frac{m^{4} R^{2} P_{1}^{2}}{2 Y}\left(\Delta p_{\Delta}+R p_{R}\right)-Y\left(\frac{\Delta \mathcal{H}_{r}}{Y}\right)^{\prime} \\
& -\frac{\Delta^{2} p_{\Delta}}{2 R}\left\{\frac{m^{4}}{2 \Delta Y} \partial_{R}\left(R^{4} P_{1}^{2}\right)+m^{2} \partial_{R}\left(R^{2} P_{2}\right)\right\} \\
& -\frac{m^{2} \mathcal{H}_{r}}{Y}\left\{\Delta\left(R^{2} P_{2}\right)^{\prime}+R^{2} \partial_{r}\left(P_{0}-\Delta P_{2}\right)\right\}=0
\end{aligned}
$$

$\Rightarrow 4-2=2 \times 1$ DoF. Energy $E=\int_{0}^{\infty} \mathcal{E} d r$ assuming $\mathcal{C}=\mathcal{S}=0$.

- The energy is positive in the physical sector of the theory.
- Other sectors shows ghost-like features - negative energies and tachyons, they are unphysical.
- The physical sector is protected from the unphysical ones by a potential barrier.

Remarks

- (A) The energy is claimed to be always positive if the parameters are chosen as $b_{k} \sim \delta_{k}^{1} /$ Comelli and Pilo/
- (B) There is a one-parameter family of theories with $5+1$ DoF which contains (A) as a special case where the energy is claimed to be positive even in the presence of the ghost /Ogievetsky, Polubarinov 1965/.

