Massive gravity theories

Mikhail S. Volkov

Institut Denis Poisson, University of Tours, FRANCE

Helmholtz International Summer School "Cosmology, Strings, New Physics" Dubna, August 2019

Motivations for massive gravity

Cosmic acceleration \Rightarrow dark energy problem.

• either A-term, very natural phenomenologically,

$$G_{\mu\nu} = \kappa T_{\mu\nu} \quad \rightarrow \quad G_{\mu\nu} + \Lambda g_{\mu\nu} = \kappa T_{\mu\nu}$$

but unnatural from the QFT viewpoint

• or modification of gravity (many options). Massive gravity:

Newton
$$\frac{1}{r} \rightarrow$$
 Yukawa $\frac{1}{r}e^{-mr}$

 $m \sim 1/(\text{Hubble radius}) \sim 10^{-33} \text{ eV. If } r < \text{Hubble, then}$ Yukawa=Newton, usual physics. Screening for $r \ge \text{Hubble} \Rightarrow$ gravity is weaker at large distance = cosmic acceleration.

 From QFT viewpoint small *m* is more natural (multiplicative renormalization) than small Λ (additive renormalization).

Contents

- Fierz-Pauli theory
- VdVZ discontinuity
- Non-linear Fierz-Pauli
- Vainshtein mechanism
- Hamiltonian analysis and the Bouleware-Deser ghost
- Ghost-free massive gravities
- Properties of the dRGT potential
- Bigravity
- Cosmologies and black holes
- Energy and superluminality
- Other issues

Reviews:

de Rham, Liv.Rev.Rel. 17 (2014) 7 Hinterbichler, Rev.Mod.Phys. 84 (2012) 681 Rubakov and Tyniakov, UFN (2008)

Key names classical: Fierz-Pauli, van-Dam-Veltman-Zakharov, Vainshtein, Boulwre-Deser, Ogievetsky-Polybarinov

Key names recent: de Rham-Gabadadze-Tolley, Hassan-Rosen

Other names: Comelli-Pilo, Mukohyama et al., Visser et al., Deser-Waldron, Akrami-Kovisto et at., Deffayet et al., etc.

<u>M.S.V.</u> JHEP 01 (2012) 035; PRD 86 (2012) 104022; PRD 85 (2012), CQG 30 (2013) 184009; 124043; PRD 90 (2014) 124090, PRD 87 (2013) 104009, JCAP 1506 (2015) 06, 017, JCAP 1807 (2018) 012, JCAP 1810 (2018) 037.

Fierz-Pauli massive gravity

Linear massless gravitons - linearized GR

$$\mathcal{L} = \frac{1}{2\kappa} R \sqrt{-g} + \mathcal{L}_{\text{matter}} \qquad /\kappa = 8\pi G, \text{ signature } (-+++) /$$
$$\boxed{G_{\mu\nu} = \kappa T_{\mu\nu}}$$

If $g_{\mu
u} = \eta_{\mu
u} + h_{\mu
u}$ then /check this/

$$- \frac{1}{2} \left\{ \Box h_{\mu\nu} - \partial_{\mu} \partial^{\alpha} h_{\alpha\nu} - \partial_{\nu} \partial^{\alpha} h_{\alpha\mu} + \eta_{\mu\nu} (\partial^{\alpha} \partial^{\beta} h_{\alpha\beta} - \Box h) + \partial_{\mu\nu} h \right\}$$

$$= -\frac{1}{2} (\Box h_{\mu\nu} + \ldots) = \kappa T_{\mu\nu}$$

so that

$$\Box h_{\mu\nu} + \ldots = -2\kappa T_{\mu\nu}$$

Gauge invariance $h_{\mu\nu} \rightarrow h_{\mu\nu} + \partial_{\mu}\xi_{\nu} + \partial_{\nu}\xi_{\mu}$ does not change the l.h.s. \Rightarrow Bianchi identities

$$0 \equiv \partial^{\mu} (\Box h_{\mu
u} + \ldots) \quad \Rightarrow \quad \partial^{\mu} T_{\mu
u} = 0$$

DoF counting

Gauge invariance $h_{\mu\nu} \rightarrow h_{\mu\nu} + \partial_{\mu}\xi_{\nu} + \partial_{\nu}\xi_{\mu}$ implies that one can impose gauge conditions. With $\mathbf{h}_{\mu\nu} = h_{\mu\nu} - \frac{h}{2}\eta_{\mu\nu}$ one requires

 $\partial^{\mu}\mathbf{h}_{\mu\nu} = 0$ 4 gauge conditions

and the equations reduce to

$$\Box \mathbf{h}_{\mu\nu} = -2\kappa T_{\mu\nu}$$

Residual gauge freedom with $\Box \xi_{\mu} = 0 \Rightarrow$ one can impose 4 more conditions $\Rightarrow 2 = 10 - 4 - 4$ DoF. If $T_{\mu\nu} = 0$

$$\mathbf{h} = 0, \ \mathbf{h}_{0k} = 0 \quad \Rightarrow \quad \mathbf{h}_{00} = 0, \ \partial_i \mathbf{h}_{ik} = 0$$

the solution is

$$\mathbf{h}_{\mu
u}(t,z) = egin{pmatrix} 0 & 0 & 0 & 0 \ 0 & D_+ & D_ imes & 0 \ 0 & D_ imes & -D_+ & 0 \ 0 & 0 & 0 & 0 \end{pmatrix} e^{ik(t-z)}$$

The equations can be obtained from $S = \int \mathcal{L} d^4 x$ with

$$\mathcal{L} = rac{1}{\kappa}\,\mathcal{L}_0 + rac{1}{2}\,h_{\mu
u}\,T^{\mu
u}$$

with

$$\begin{aligned} \mathcal{L}_0 &= \quad \text{quadratic part of } \left\{ \frac{1}{2} R \sqrt{-g} \right\} \\ &= \quad \frac{1}{4} \left(-\frac{1}{2} \partial_\alpha h_{\mu\nu} \partial^\alpha h^{\mu\nu} + \partial_\mu h_{\nu\alpha} \partial^\nu h^{\mu\alpha} - \partial_\mu h^{\mu\nu} \partial_\nu h + \frac{1}{2} \partial_\mu h \partial^\mu h \right) \end{aligned}$$

which is invariant under diffeomorphisms

$$\mathcal{L}_0(h_{\mu
u}+\partial_\mu\xi_
u+\partial_
u\xi_\mu)=\mathcal{L}_0(h_{\mu
u})$$

The matter term is also invariant since $\partial_{\mu}T^{\mu\nu} = 0$.

Linear massive gravitons – Fierz and Pauli /1939/

$$\Box \phi = 0 \Rightarrow \Box \phi = m^{2} \phi. \quad \text{Similarly for gravitons } /h = \eta^{\mu\nu} h_{\mu\nu} /$$
$$\Box h_{\mu\nu} + \ldots = m^{2} (h_{\mu\nu} - \alpha h \eta_{\mu\nu}) - 2\kappa T_{\mu\nu}$$

 \Rightarrow no gauge invariance anymore. Taking the divergence gives 4 constraints

$$m^2(\partial^\mu h_{\mu
u}-lpha\partial_
u h)=0$$

Taking the trace and using the 4 constraints gives

$$2(\alpha-1)\Box h = m^2(1-4\alpha)h - 2\kappa T$$

 \Rightarrow for lpha=1 one gets the fifth constraint

$$h = -\frac{2\kappa}{3m^2} T$$

 \Rightarrow 10 - 5 = 5 DoF=graviton polarizations.

FP action

The FP equations can be obtained from $S = \int \mathcal{L}_{\rm FP} d^4 x$ with

$$\mathcal{L}_{\rm FP} = \frac{1}{\kappa} \left(\mathcal{L}_0 - \mathbf{m}^2 U \right) + \frac{1}{2} h_{\mu\nu} T^{\mu\nu}$$

where the kinetic term is the same as in GR,

$$\mathcal{L}_{0} = \frac{1}{4} \left(-\frac{1}{2} \partial_{\alpha} h_{\mu\nu} \partial^{\alpha} h^{\mu\nu} + \partial_{\mu} h_{\nu\alpha} \partial^{\nu} h^{\mu\alpha} - \partial_{\mu} h^{\mu\nu} \partial_{\nu} h + \frac{1}{2} \partial_{\mu} h \partial^{\mu} h \right)$$

while the mass term

$$U=\frac{1}{8}\left(h_{\mu\nu}h^{\mu\nu}-h^2\right)$$

breaks the diff. invariance.

FP equations

$$\Box h_{\mu\nu} - \partial_{\mu}\partial^{\alpha}h_{\alpha\nu} - \partial_{\nu}\partial^{\alpha}h_{\alpha\mu} + \eta_{\mu\nu}(\partial^{\alpha}\partial^{\beta}h_{\alpha\beta} - \Box h) + \partial_{\mu\nu}h = m^{2}(h_{\mu\nu} - h\eta_{\mu\nu}) - 2\kappa T_{\mu\nu}$$

are equivalent to

$$\Box h_{\mu\nu} - \partial_{\mu\nu} h = m^{2} (h_{\mu\nu} - h \eta_{\mu\nu}) - 2\kappa T_{\mu\nu}$$
$$\partial^{\mu} h_{\mu\nu} = \partial_{\nu} h$$
$$h = -\frac{2\kappa}{3m^{2}} T$$

They describe free massive gravitons in flat space. Each graviton has 5 degrees of freedom = 5 spin polarizations.

Theory is NOT invariant under $h_{\mu\nu} \rightarrow h_{\mu\nu} + \partial_{\mu}\xi_{\nu} + \partial_{\nu}\xi_{\mu}$

Free massive gravitons

If $T_{\mu\nu} = 0$ then

+

$$\Box h_{\mu\nu} = m^2 (h_{\mu\nu} - h \eta_{\mu\nu})$$
$$\partial^{\mu} h_{\mu\nu} = h = 0$$

the solution is, with $\omega = \sqrt{k^2 + m^2}$,

$$\mathbf{h}_{\mu\nu}(t,z) = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & D_{+} & D_{\times} & 0 \\ 0 & D_{\times} & -D_{+} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} e^{i(\omega t - kz)}$$
$$- \begin{pmatrix} 0 & V_{1} & V_{2} & 0 \\ V_{1} & 0 & 0 & 0 \\ V_{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} e^{i(\omega t - kz)} + \begin{pmatrix} 2S & 0 & 0 & 0 \\ 0 & -S & 0 & 0 \\ 0 & 0 & -S & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} e^{i(\omega t - kz)}$$

Contribution of vectors and scalar to the GW170817 signal is less than 0.1%. Taking $m \rightarrow 0$, tensor modes become massless gravitons. Vectors and scalars can probably be set to zero.

Veltman-van Dam-Zakharov (VdVZ) discontinuity

VdVZ discontinuity /1970/

If $T_{\mu\nu} \neq 0$ then the FP equations are

$$\exists h_{\mu\nu} + \dots = m^{2} (h_{\mu\nu} - h \eta_{\mu\nu}) - 2\kappa T_{\mu\nu} \partial^{\mu} h_{\mu\nu} = \partial_{\nu} h h = -\frac{2\kappa}{3m^{2}} T$$

The $m \rightarrow 0$ limit is apparently singular. How to take it ?

Introducing the Stueckelberg fields $\chi_{\mu\nu}$, A_{μ} , and ϕ one decomposes $h_{\mu\nu}$ into tensor, vector, and the scalar parts as

VdVZ, limit $m \rightarrow 0$

$$h_{\mu\nu} = \chi_{\mu\nu} + \frac{1}{m} \left(\partial_{\mu} A_{\nu} + \partial_{\nu} A_{\mu} \right) + \frac{1}{m^2} \partial_{\mu} \partial_{\nu} \phi$$

This is invariant under the local

$$\chi_{\mu\nu} \to \chi_{\mu\nu} + \partial_{\mu}\xi_{\nu} + \partial_{\nu}\xi_{\mu} \qquad A_{\mu} \to A_{\mu} - \frac{m}{\xi_{\mu}},$$
$$A_{\mu} \to A_{\mu} + \partial_{\mu}\Psi \qquad \phi \to \phi - \frac{m}{\Psi}\Psi$$

Setting $\chi_{\mu\nu}={f h}_{\mu\nu}+\left(\phi/2
ight)\eta_{\mu\nu}$ and taking the m
ightarrow 0 limit gives

$$\Box \mathbf{h}_{\mu\nu} + \dots = -2\kappa T_{\mu\nu} \quad \text{tensor modes}$$

$$\partial^{\mu} (\partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu}) = 0 \quad \text{vector modes}$$

$$\Box \phi = -\frac{2\kappa}{3} T \quad \text{scalar mode}$$

Vector modes decouple. Scalar rests coupled the matter \Rightarrow additional attractive field (5th force) \Rightarrow wrong Newton law but correct light bending. One can rescale $\kappa \Rightarrow$ correct Newton law but wrong light bending.

VdVZ – two source interaction

The tree amplitude of interaction of two matter sources is

$$\mathcal{A}_{12} = \kappa T_1^{\mu\nu} P_{\mu\nu\alpha\beta} T_2^{\alpha\beta}$$

One has in the FP theory

$$\mathcal{P}_{\mu
ulphaeta}=\mathcal{P}^{\mathrm{FP}}_{\mu
ulphaeta}=\sum_{i=1}^{5}e^{i}_{\mu
u}e^{i}_{lphaeta}\,rac{1}{p^{2}-m^{2}},$$

$$\mathcal{P}_{\mu
ulphaeta}=\mathcal{P}^{ ext{GR}}_{\mu
ulphaeta}=\sum_{i=1}^2 e^i_{\mu
u}e^i_{lphaeta}\,rac{1}{p^2}.$$

If $m \to \text{then}$

$$P^{\rm FP}_{\mu
ulphaeta} = P^{\rm GR}_{\mu
ulphaeta} + rac{\eta_{\mu
u}\eta_{lphaeta}}{p^2} + \dots$$

extra term gives an extra attraction due to the scalar graviton coupled to T.

FP does not agree with GR, however small m is.

VdVZ solution

Scalar graviton mode can propagate in the spherically-symmetric sector

$$ds^2 = -e^{\nu(R)}dt^2 + e^{\lambda(R)}dR^2 + R^2d\Omega^2 \qquad (\star)$$

Let $R o R(r) = r e^{\mu(r)/2}$ then

$$ds^{2} = -e^{\nu(r)}dt^{2} + e^{\lambda(r)}R'^{2}(r)dr^{2} + r^{2}e^{\mu(r)}d\Omega^{2} \qquad (\star\star)$$

- In GR metrics (★) and (★★) are equivalent and µ is a pure gauge parameter, one can set µ = 0 by changing back r → r(R).
- In FP there is no invariance, (*) and (**) are NOT equivalent, μ(r) is not a pure gauge but describes the scalar graviton.
- Linearizing (★★) gives

$$h_{00} =
u$$
, $h_{rr} = -\lambda - (r\mu)'$, $h_{\vartheta\vartheta} = -r^2\mu$, $h_{\varphi\varphi} = -r^2\mu\sin^2\vartheta$

The FP equations

FP equations

$$\frac{1}{r}\lambda' + \frac{1}{r^2}\lambda = -\frac{m^2}{2}(\lambda + 3\mu + r\mu') -\frac{1}{r}\nu' + \frac{1}{r^2}\lambda = -m^2(\mu + \frac{\nu}{2}) m^2(\frac{\nu'}{2} - \frac{\lambda}{r}) = 0$$
(†)

For m = 0 one gets the GR solution (μ is arbitrary = pure guge)

$$\lambda = -\nu = \frac{r_g}{r} \equiv \frac{2\kappa M}{r} \qquad \qquad \boxed{\nu + \lambda = 0}$$

For $m \neq 0$ this does not pass through (†), one finds instead

VdVZ potential

$$\nu = -\frac{2C}{r}e^{-mr}, \qquad \lambda = \frac{C}{r}(1+mr)e^{-mr}$$
$$\mu = C\frac{1+mr+(mr)^2}{m^2r^3}e^{-mr}$$

In the near zone, for $r \ll 1/m$, this reduces to the VdVZ solution

$$u = -\frac{2C}{r}, \qquad \lambda = \frac{C}{r}, \qquad \mu = \frac{C}{r(mr)^2} \sim \frac{1}{r^3}$$

therefore

$$\nu+\lambda\neq \mathbf{0}$$

 \Rightarrow depending on choice of C either the Newton law is wrong or the light bending is wrong.

Does this rule out the massive gravity ? No, there is a remedy at the non-linear level.

Non-linear Fierz-Pauli – the bimetric theory

Non-linear FP

$$S = rac{1}{\kappa} \int \sqrt{-g} \left(rac{1}{2} R(g) - m^2 U(g, f) \right) d^4 x + S_{ ext{mat}}$$

where U is a scalar function of $g_{\mu\nu}$. One cannot construct a scalar using only $g_{\mu\nu}$. However, if there is a second fixed non-dynamical reference metric $f_{\mu\nu} = \eta_{\mu\nu}$ then one defines

$$\hat{\mathcal{S}} = \hat{1} - \hat{g}^{-1}\hat{f} \qquad \Rightarrow \qquad {\mathcal{S}}^{\mu}_{\
u} = \delta^{\mu}_{
u} - g^{\mu\sigma}f_{\sigma
u}$$

and then one can choose any function (infinitely many options)

$$U = U([\hat{\mathcal{S}}], [\hat{\mathcal{S}}^2], [\hat{\mathcal{S}}^3], \det \hat{\mathcal{S}}).$$

In the weak field limit $g_{\mu\nu} = f_{\mu\nu} + h_{\mu\nu}$ and $S_{\mu\nu} = h_{\mu\nu} + \dots$ The correct FP limit for small \hat{S} is achieved if

$$U = rac{1}{8} \left([\hat{\mathcal{S}}^2] - [\hat{\mathcal{S}}]^2
ight) + \mathcal{O}(\mathcal{S}^3)$$

One can allow for diffeomorphisms by setting

$$f_{\mu\nu} = \eta_{AB} \partial_{\mu} \Phi^{A} \partial_{\nu} \Phi^{B}$$

where Φ^A are Stueckelberg scalars.

Equations

One can define two energy-momentum tensors

$$T_{\mu\nu} = 2 \frac{\partial U}{\partial g_{\mu\nu}} - U g_{\mu\nu}, \qquad T_{\mu\nu} = 2 \frac{\partial U}{\partial f_{\mu\nu}} - U f_{\mu\nu},$$

the equations are

$$G_{\mu
u} = m^2 T_{\mu
u} \Rightarrow
abla^\mu T_{\mu
u} = 0$$

The diff. invariance of U implies the identity

$$\sqrt{-g} \,
abla^{\mu} T_{\mu
u} - \sqrt{-\eta} \, \partial^{\mu} \mathcal{T}_{\mu
u} \equiv 0$$

and therefore one has on-shell

$$\partial^{\mu}\mathcal{T}_{\mu
u} = 0$$

Theory of Ogievetsky-Polubarinov /1965/

$$S = \frac{1}{\kappa} \int \sqrt{-g} \left(\frac{1}{2} R(g) - m^2 U(g, \eta) \right) d^4 x$$

the primary object is the graviton field $h^{\mu
u}$ defining the metric

$$\left(\frac{\sqrt{-g}}{\sqrt{-\eta}}\right)^{s+1} \left((\hat{g}^{-1})^n\right)^{\mu\nu} = \eta^{\mu\nu} + h^{\mu\nu}.$$

the equations

$$G_{\mu\nu} = \frac{m^2}{T_{\mu\nu}} \Rightarrow \Box h_{\mu\nu} = \frac{m^2}{h_{\mu\nu}} + \text{non-linear terms}$$

$$\partial^{\mu}\mathcal{T}_{\mu\nu} = 0 \Rightarrow \partial^{\mu}h_{\mu\nu} = \lambda\partial_{\nu}h$$

the OP potential, with $S^{\mu}_{\ \nu}=g^{\mu\sigma}\eta_{\sigma
u}$,

$$U = rac{1}{4n^2} \left(\det(\hat{S})
ight)^{-s/2} [\hat{S}^n]$$

which gives $\lambda = -s/(2n)$.

VdVZ and Vainshtein mechanism

Vainshtein /1972/

Let us consider a non-linear FP

$$S = \frac{1}{\kappa} \int \left(\frac{1}{2} R - \frac{m^2}{8} (S^{\alpha}_{\ \beta} S^{\beta}_{\ \alpha} - (S^{\alpha}_{\ \alpha})^2) \right) \sqrt{-g} \, d^4 x + S_{\text{mat}}$$

with ${\cal K}^\mu_\nu=\delta^\mu_\nu-g^{\mu\alpha}\eta_{\alpha\nu}$ and consider a spherically symmetric metric

$$ds^2 = e^{\nu(r)}dt^2 - e^{\lambda(r)}R'^2dr^2 - R^2d\Omega^2$$

with $R = r e^{\mu/2}$ and compute non-linear corrections to the VdVZ. At large r, one looks for solutions of $G_{\mu\nu} = m^2 T_{\mu\nu}$ in the form

$$\nu(r) = \sum_{n \ge 1} \kappa^n \nu_n(r), \quad \lambda(r) = \sum_{n \ge 1} \kappa^n \lambda_n(r), \quad \mu(r) = \sum_{n \ge 1} \kappa^n \mu_n(r).$$

the n = 1 terms being the VdVZ solution

Large r solution

$$\nu = -\frac{2r_g}{r} \left(1 + c_1 \frac{r_g}{m^4 r^5} + \dots \right)$$

$$\lambda = \frac{r_g}{r} \left(1 + c_2 \frac{r_g}{m^4 r^5} + \dots \right)$$

$$\mu = \frac{r_g}{m^2 r^3} \left(1 + c_3 \frac{r_g}{m^4 r^5} + \dots \right)$$

Leading terms are the VdVZ solution. For $m \sim (10^{25} cm)^{-1}$ the next-to-leading terms are $\sim r_g/(m^4 r^5) \sim 10^{32}$ at the edge of solar system. They become small only for

$$r \gg r_V = \left(r_g / m^4 \right)^{1/5} \sim 100 \ Kps$$

The VdVZ problem therefore arises only for $r \gg r_V$.

$$u(r) = \sum_{n \ge 0} m^{2n} \nu_n(r), \quad \lambda(r) = \sum_{n \ge 0} m^{2n} \lambda_n(r), \quad \mu(r) = \sum_{n \ge 0} m^{2n} \mu_n(r),$$

it is assumed that ν_0 , λ_0 are small, their equations are linearized, while μ_0 is not small and its equation is fully non-linear. For $r \gg r_g$ one finds

$$\nu = -\frac{r_g}{r} \left(1 + a_1 (mr)^2 \sqrt{r/r_g} + \dots \right)$$
$$\lambda = \frac{r_g}{r} \left(1 + a_2 (mr)^2 \sqrt{r/r_g} + \dots \right)$$
$$\mu = \sqrt{\frac{ar_g}{r}} \left(1 + a_3 (mr)^2 \sqrt{r/r_g} + \dots \right)$$

so ν , λ show the GR behavior. Corrections are small for $r \ll r_V \Rightarrow$ one recovers GR in the non-linear regime.

Vainshtein scenario

• The VdVZ discontinuity is only visible in the linear regime, for

$$r \gg r_V = \left(rac{r_g}{m^4}
ight)^{1/5} \sim 100 Kps$$

- For $r \ll r_V$ the scalar graviton is frozen by non-linear effects and does not propagate \Rightarrow GR is recovered.
- For $r \sim r_V$ there is a transition between the two regimes.

The VdVZ problem is cured by the non-linear effects. This restores GR.

A model for Vainshtein

$$S = \frac{1}{\kappa} \int \left(\frac{1}{2} R - \frac{m^2}{8} (\mathcal{K}^{\alpha}_{\ \beta} \mathcal{K}^{\beta}_{\ \alpha} - (\mathcal{K}^{\alpha}_{\ \alpha})^2) \right) \sqrt{-g} \, d^4x + S_{\text{mat}}$$

$$\mathcal{K}^{\mu}_{\nu} = \delta^{\mu}_{\nu} - g^{\mu\alpha} f_{\alpha\nu} \qquad f_{\mu\nu} = \eta_{AB} \partial_{\mu} \Phi^{A} \partial_{\nu} \Phi^{B}$$

In static, spherically symmetric case

$$g_{\mu\nu}dx^{\mu}dx^{\nu} = -e^{\nu(r)}dt^{2} + e^{\lambda(r)}dr^{2} + r^{2}d\Omega^{2}$$

$$f_{\mu\nu}dx^{\mu}dx^{\nu} = -dt^{2} + dR^{2} + R^{2}d\Omega^{2}$$

$$R(r) = re^{\mu(r)/2}$$
 Stuckelberg field

One looks for an asymptotically flat solution describing a localized object (star). Field equations

$$G_{\mu\nu} = m^2 T_{\mu\nu} + \kappa T_{\mu\nu}^{\rm mat}$$

$$T_{\mu
u} = 2 \, rac{\partial \mathcal{U}}{\partial g^{\mu
u}} - g_{\mu
u} \, \mathcal{U}, \qquad T^{\mathrm{mat}} \, {}^{\mu}_{
u} = \mathrm{diag}[-
ho, P, P, P]$$

Field equations

$$\begin{aligned} & \mathcal{H}^{\mu}_{\nu} &= \text{ diag} \left[1 - e^{-\nu}, 1 - e^{-\lambda} \mathcal{R}^{\prime 2}, 1 - e^{\mu}, 1 - e^{\mu} \right] \\ & \mathcal{T}^{\mu}_{\nu} &= \delta^{\mu}_{\nu} \frac{1}{8} ((1 - \mathcal{H}^{\mu}_{\nu})(\mathcal{H}^{\mu}_{\nu} - [\mathcal{H}]) + [\mathcal{H}^{2}] \quad /\text{no sum over } \mu, \nu / \end{aligned}$$

4 independent field equations determine u, λ, μ, P

$$G_0^0 = e^{-\lambda} \left(\frac{1}{r^2} - \frac{\lambda'}{r} \right) - \frac{1}{r^2} = m^2 T_0^0 - \kappa \rho$$

$$G_r^r = e^{-\lambda} \left(\frac{1}{r^2} + \frac{\nu'}{r} \right) - \frac{1}{r^2} = m^2 T_r^r + \kappa P$$

$$(T_r^r)' = -\frac{\nu'}{2} (T_r^r - T_0^0) + \frac{2}{r} (T_\vartheta^\vartheta - T_r^r) \qquad \text{/conservation of } T_{\mu\nu} / P' = -\frac{\nu'}{2} (P + \rho) \qquad \text{/conservation of } T_{\mu\nu}^{\text{mat}} / P'$$

while $\rho(r) = \rho_{\star} \Theta(r_{\star} - r) \Rightarrow$ star of radius r_{\star} and density ρ_{\star} .

- Free massive gravitons are described by the linear Fierz-Pauli theory.
- This theory gives different from GR predictions in the $m \rightarrow 0$ limit due to the additional attraction mediated by the scalar graviton (VdVZ problem).
- In non-linear generalizations of the FP theory the scalar graviton is strongly bound by non-linear effects within the Vainshtein radius

$$r_V = \left(\frac{r_g}{m^4}\right)^{1/5}$$

This pushes the VdVZ effect to the region $r \gg r_V$ and restores GR for $r \ll r_V$.

 As a result, theories with massive gravitons can agree with observations.

Boulware-Deser problem: non-linear effects bring back the ghost = sixth DoF.

Fierz and Pauli with 6 DoF

$$\Box h_{\mu\nu} + \ldots = m^2 (h_{\mu\nu} - \alpha h \eta_{\mu\nu}) - 2\kappa T_{\mu\nu}$$

Taking the divergence gives 4 constraints

$$m^2(\partial^{\mu}h_{\mu\nu}-\alpha\partial_{\nu}h)=0$$

Taking the trace gives

$$2(\alpha-1)\Box h = m^2(1-4\alpha)h - 2\kappa T$$

 \Rightarrow for $\alpha = 1$ one gets the fifth constraint

$$h = -\frac{2\kappa}{3m^2} T$$

 \Rightarrow 10 - 5 = 5 DoF=graviton polarizations. If $\alpha \neq 1 \Rightarrow$ there are 6 DoF. The additional mode is a ghost: its kinetic energy is negative.

Sixth DoF

Let $\alpha \neq 1$. One can always decompose $h_{\mu\nu}$ as

$$h_{\mu\nu} = \psi_{\mu\nu} + \partial_{\mu}\xi_{\nu} + \partial_{\nu}\xi_{\mu} + \partial_{\mu\nu}\phi \quad \Rightarrow \quad h = \psi + \Box\phi$$

where $\partial^{\mu}\psi_{\mu\nu} = \partial^{\mu}\xi_{\mu} = 0$. The last FP equation

$$2(\alpha-1)\Box h = m^2(1-4\alpha)h - 2\kappa T$$

then gives $\Box^2 \phi + \ldots = 0$, the corresponding term in the action

$$(\Box \phi)^{2} = \chi \Box \phi - \frac{1}{4} \chi^{2} / \chi = 2 \Box \phi_{1}$$
$$= (\phi_{1} - \phi_{2}) \Box (\phi_{1} + \phi_{2}) - \frac{1}{4} (\phi_{1} - \phi_{2})^{2}$$
$$= \phi_{1} \Box \phi_{1} - \phi_{2} \Box \phi_{2} - \frac{1}{4} (\phi_{1} - \phi_{2})^{2}$$

The minus sign = negative kinetic energy = Ostrogradsky ghost.

The ghost can be removed in the linear FP theory by choosing $\alpha = 1$. However, it comes back in the non-linear FP. Therefore the latter make no sense.

This stopped all developments of massive gravity for almost 40 years.
Hamiltonian formulation

The Lagrangian

$$\mathcal{L} = \left(\frac{1}{2}\,R - m^2\,\mathcal{U}\right)\sqrt{-g}$$

after the ADM decomposition

$$ds_g^2 = -N^2 dt^2 + \gamma_{ik} (dx^i + N^i dt) (dx^k + N^k dt)$$

$$ds_f^2 = -dt^2 + \delta_{ik} dx^i dx^k$$

becomes

$$\mathcal{L} = \frac{1}{2}\sqrt{\gamma} N \left(\mathcal{K}_{ik} \mathcal{K}^{ik} - \mathcal{K}^2 + \mathcal{R}^{(3)} \right) - \frac{m^2}{2} \mathcal{V}(N^{\mu}, \gamma_{ik}) + \text{total derivative}$$

where $\mathcal{V}=\sqrt{\gamma}\,\textit{N}\,\mathcal{U}$ and the second fundamental form

$$K_{ik} = \frac{1}{2N} \left(\dot{\gamma}_{ik} - \nabla_i^{(3)} N_k - \nabla_k^{(3)} N_i \right)$$

Variables are γ_{ik} and $N^{\mu} = (N, N^k)$.

Hamiltonian

Conjugate momenta

$$\pi^{ik} = \frac{\partial \mathcal{L}}{\partial \dot{\gamma}_{ik}} = \frac{1}{2} \sqrt{\gamma} (K^{ik} - K \gamma^{ik}), \qquad p_{N_{\mu}} = \frac{\partial \mathcal{L}}{\partial \dot{N}^{\mu}} = 0 \qquad \text{constraints}$$

 $\Rightarrow N^{\nu}$ are non-dynamical \Rightarrow phase space is spanned by 12 variables $(\pi^{ik}, \gamma_{ik}) = 6$ DoF. Hamiltonian

$$H = \pi^{ik} \dot{\gamma}_{ik} - \mathcal{L} = N^{\mu} \mathcal{H}_{\mu}(\pi^{ik}, \gamma_{ik}) + m^2 \mathcal{V}(N^{\mu}, \gamma_{ik})$$

with

$$\mathcal{H}_0 = rac{1}{\sqrt{\gamma}} \left(2 \pi_{ik} \pi^{ik} - (\pi^k_k)^2
ight) - rac{1}{2} \sqrt{\gamma} \mathcal{R}^{(3)}, \quad \mathcal{H}_k = -2
abla^{(3)}_i \pi^i_k$$

Secondary constrints

$$-\dot{p}_{N_{\mu}} = \frac{\partial \mathcal{H}}{\partial N^{\mu}} = \mathcal{H}_{\mu}(\pi^{ik}, \gamma_{ik}) + \frac{m^2}{\partial \mathcal{V}(N^{\mu}, \gamma_{ik})} = 0$$

Degrees of freedom, m = 0

$$\frac{\partial \mathcal{H}}{\partial N^{\mu}} = \mathcal{H}_{\mu}(\pi^{ik}, \gamma_{ik}) + \frac{m^2}{\partial \mathcal{V}(N^{\mu}, \gamma_{ik})}{\partial N^{\mu}} = 0 \qquad (\star)$$

• If m = 0 this gives 4 constraints

$$\mathcal{H}_{\mu}(\pi^{ik},\gamma_{ik})=0$$

They are first class

$$\{\mathcal{H}_{\mu},\mathcal{H}_{\nu}\}\sim\mathcal{H}_{\alpha}$$

and generate gauge symmetries, one can impose 4 gauge conditions, there remain 4 independent phase space variables

 $12 - 4 - 4 = 4 = 2 \times (2 \text{ DoF}) \Rightarrow 2 \text{ graviton polarizations}$

Energy vanishes on the constraint surface (up to a surface term)

$$H = \mathbf{N}^{\mu} \mathcal{H}_{\mu} = 0$$

Degrees of freedom, $m \neq 0$

$$\frac{\partial \mathcal{H}}{\partial N^{\mu}} = \mathcal{H}_{\mu}(\pi^{ik}, \gamma_{ik}) + \frac{m^2}{\partial \mathcal{V}(N^{\mu}, \gamma_{ik})} = 0 \qquad (\star)$$

 If m ≠ 0 this gives 4 equations for laps and shifts whose solution is N^μ(π^{ik}, γ_{ik}). No constraints arise ⇒ there are

$$12 = 2 \times (6 \text{ degrees of freedom})$$

Inserting $N^{\mu} = N^{\mu}(\pi^{ik}, \gamma_{ik})$ back to the Hamiltonian

$$\mathcal{H} = \mathcal{N}^{\mu}\mathcal{H}_{\mu} + m^{2}\mathcal{V}(\mathcal{N}^{\mu},\gamma_{ik})$$

yields $H(\pi^{ik}, \gamma_{ik})$ whose kinetic energy part is not positive-definite \Rightarrow the energy is unbounded from below. This is related to the sixth DoF=ghost. The ghost is removed on flat background by choosing $\alpha = 1$, but it comes back on arbitrary background.

In non-linear Fierz-Pauli theory the VdVZ is cured but the ghost comes back /Boulware-Deser 1972/

Ghost-free massive gravity

Ghost-free massive gravity /2010/

One has

$$\frac{\partial \mathcal{H}}{\partial N^{\mu}} = \mathcal{H}_{\mu}(\pi^{ik}, \gamma_{ik}) + m^2 \frac{\partial \mathcal{V}(N^{\mu}, \gamma_{ik})}{\partial N^{\mu}} = 0 \qquad (\star)$$

with

$$\mathcal{V}(N^{\mu}, \gamma_{ik}) = \frac{1}{8}\sqrt{-g}\left([H^2] - [H]^2\right) + \text{higher order terms}$$

One can choose the higher order terms such that

$$\mathsf{rank}\left(\frac{\partial^2 \mathcal{V}(N^{\mu},\gamma_{ik})}{\partial N^{\nu} \partial N^{\mu}}\right) = 3$$

 \Rightarrow the 4 equations (\star) determine only 3 shifts $N^k = N^k(\pi^{ik}, \gamma_{ik})$, the lapse N remains undetermined, the 4-th equation reduces to a constraint

$$\mathcal{C}(\pi^{ik},\gamma_{ik})=0 \quad \Rightarrow \quad \dot{\mathcal{C}}=\{\mathcal{C},H\}\equiv S=0.$$

The two constraints C, S remove one DoF, there remain 5.

dRGT theory

Explicitely

$$S = M_{\rm Pl}^2 \int \left(\frac{1}{2}R - m^2 \mathcal{U}\right) \sqrt{-g} d^4 x$$
$$\mathcal{U} = b_0 + b_1 \sum_a \lambda_a + b_2 \sum_{a < b} \lambda_a \lambda_b + b_3 \sum_{a < b < c} \lambda_a \lambda_b \lambda_c + b_4 \lambda_0 \lambda_1 \lambda_2 \lambda_3$$

where b_k are parameters and λ_a are eigenvalues of the matrix

$$\gamma^{\mu}_{\ \nu} = \sqrt{g^{\mu\alpha}f_{\alpha\nu}}$$

/de Rham, Gabadadze, Tolley 2010/

A different parameter choice

$$S = M_{\rm Pl}^2 \int \left(\frac{1}{2}R - m^2 \mathcal{U}\right) \sqrt{-g} d^4 x$$
$$\mathcal{U} = c_0 + c_1 \sum_a \lambda_a + c_2 \sum_{a < b} \lambda_a \lambda_b + c_3 \sum_{a < b < c} \lambda_a \lambda_b \lambda_c + c_4 \lambda_0 \lambda_1 \lambda_2 \lambda_3$$

where λ_a are eigenvalues of $\left[\mathcal{K}^{\mu}_{\ \nu} = \delta^{\mu}_{\nu} - \sqrt{g^{\mu\alpha}f_{\alpha\nu}} \right]$ Flat space is a solution if $c_0 = c_1 = 0$, $c_1 = -1/2$ then

$$\begin{aligned} \mathcal{U} &= \frac{1}{2} ([\mathcal{K}^2] - [\mathcal{K}]^2) \\ &+ \frac{c_3}{3!} ([\mathcal{K}]^3 - 3[\gamma][\mathcal{K}]^2) + 2[\mathcal{K}^3]) \\ &+ \frac{c_4}{4!} ([\mathcal{K}]^4 - 6[\mathcal{K}^2][\mathcal{K}]^2) + 8[\mathcal{K}][\mathcal{K}^3] + 3[\mathcal{K}^2]^2 - 6[\mathcal{K}^4]). \end{aligned}$$

In the simplest case $c_3 = c_4 = 0 \Rightarrow$

$$\mathcal{U}=rac{1}{2}([\mathcal{K}^2]-[\mathcal{K}]^2)$$

Theory cutoff

Let

$$S = M_{\rm Pl}^2 \int \left(\frac{1}{2} R - m^2 \mathcal{U}\right) \sqrt{-g} d^4 x$$
$$\mathcal{U} = \frac{1}{8} \left(H_{\nu}^{\mu} H_{\mu}^{\nu} - (H_{\alpha}^{\alpha})^2\right) + \dots$$
$$H_{\nu}^{\mu} = \delta_{\nu}^{\mu} - g^{\mu\alpha} f_{\alpha\nu} \qquad f_{\mu\nu} = \eta_{\alpha\beta} \partial_{\mu} \Phi^{\alpha} \partial_{\nu} \Phi^{\beta}$$

$$g_{\mu\nu} = \eta_{\mu\nu} + \frac{1}{M_{\rm Pl}} h_{\mu\nu} \qquad \partial_{\mu} \Phi^{\alpha} = \delta^{\alpha}_{\mu} + \frac{1}{mM_{\rm Pl}} \partial_{\mu} A^{\alpha} + \frac{1}{m^2 M_{\rm Pl}^2} \partial_{\mu} \partial^{\alpha} \phi$$

then expanding the kinetic term (similarly for $g_{\mu
u} = g^0_{\mu
u} + rac{1}{M_{
m Pl}} h_{\mu
u})$

$$\frac{M_{\rm Pl}^2}{2} R \sqrt{-g} = \underbrace{\frac{1}{8} \left(-\partial_\alpha h_{\mu\nu} \partial^\alpha h^{\mu\nu} + \ldots \right)}_{\text{classical part}} + \underbrace{\frac{1}{M_{\rm Pl}} \mathcal{O}(h^3) + \ldots}_{\text{quantum corrections}}$$

Quantum corrections become important only for $E \sim M_{\rm Pl}$.

Raising the cutoff

Expanding the potential gives (if $A_{\mu} = 0$)

$$\begin{array}{l} & \displaystyle \frac{m^2 M_{\rm Pl}^2 \mathcal{U} \sqrt{-g} = (\partial \phi)^2 \\ + \underbrace{\frac{1}{(\Lambda_5)^5} \left((\partial^2 \phi)^2 + \ldots \right) + \frac{1}{(\Lambda_3)^3} \left(h(\partial^2 \phi)^2 + \ldots \right) + \ldots }_{\text{quantum corrections}} \end{array}$$

The quantum corrections become important when $E \sim \Lambda_5$ where the lowest cutoff scale is

$$\Lambda_5 = (M_{\rm Pl}m^4)^{1/5} \sim 1/(10^{11} km)^{1/5}$$

One can adjust the higher order terms in ${\cal U}$ such that all terms suppressed by Λ_5 are total derivatives and vanish upon integration. The rest sums up to ${\cal U}_{\rm dRGT}$. This raises the cutoff to

$$\Lambda_3 = (M_{\rm Pl}m^2)^{1/3} \sim 1/(10^3 {\rm km})$$

 \Rightarrow reliable predictions within Solar System.

Galileons in the decoupling limit: $M_{\rm Pl} \rightarrow \infty$, $m \rightarrow 0$, $\Lambda_3 = (M_{\rm Pl}m^2)^{1/3} = {\rm const.}$

$$g_{\mu\nu} = \eta_{\mu\nu} + \frac{1}{M_{\rm Pl}} h_{\mu\nu} \qquad \partial_{\mu} \Phi^{\alpha} = \delta^{\alpha}_{\mu} + \frac{1}{mM_{\rm Pl}} \partial_{\mu} A^{\alpha} + \frac{1}{m^2 M_{\rm Pl}^2} \partial_{\mu} \partial^{\alpha} \phi$$

with $h_{\mu\nu} = \mathbf{h}_{\mu\nu} + a_1 \phi \eta_{\mu\nu} + a_2 \partial_{\mu} \phi \partial_{\nu} \phi$ one obtains (if $A_{\mu} = 0$)

$$\mathcal{L}_{\Lambda_3} = \mathcal{L}_0(\mathbf{h}_{\mu\nu}) + \sum_{n=2}^5 \frac{d_n}{\Lambda_3^{3(n-2)}} \, \mathcal{L}_{\text{Gal}}^{(n)}[\phi] + \frac{q}{\Lambda_3^6} \, \mathbf{h}^{\mu\nu} X_{\mu\nu}^{(3)}$$

where the Galileon terms (shift inv. $\phi \rightarrow \phi + \phi_0$) $/\Pi_{\mu\nu} = \partial_{\mu\nu}\phi/$

$$\mathcal{L}^{(2)} = (\partial \phi)^{2},$$

$$\mathcal{L}^{(3)} = (\partial \phi)^{2} [\Pi],$$

$$\mathcal{L}^{(4)} = (\partial \phi)^{2} ([\Pi]^{2} - [\Pi^{2}]),$$

$$\mathcal{L}^{(5)} = (\partial \phi)^{2} ([\Pi]^{3} - 3[\Pi][\Pi^{2}] + 3[\Pi^{3}])$$

$$= ([\Pi]^{3} - 3[\Pi][\Pi^{2}] + 3[\Pi^{3}])\eta_{\mu\nu} - 3([\Pi]\Pi_{\mu\nu} - 2[\Pi]\Pi_{\mu\nu}^{2} - [\Pi^{2}]\Pi_{\mu\nu} + 2\Pi_{\mu\nu}^{3})$$

Galileon model of Vainshtein screening

$$\mathcal{L} = -\frac{1}{2} (\partial \phi)^2 - \frac{1}{\Lambda^3} (\partial \phi)^2 \Box \phi + \phi T$$

let $T = -4\pi M \delta^{(3)}(\vec{r}) = -M \frac{\delta(r)}{r^2}$

then

$$\frac{\phi'}{r} + \frac{1}{\Lambda^3} \left(\frac{\phi'}{r}\right)^2 = \frac{M}{r^3}$$

The Vainshtein radius is $r_{
m V}=M^{1/3}/\Lambda$

for $r \ll r_{
m V}$ the force ratio

$$rac{\phi'}{ ext{Newton force}} = \left(rac{r}{r_{ ext{V}}}
ight)^{3/2} \ll 1$$

 \Rightarrow scalar graviton is screened at small distances.

Other massive gravities with 5 DoF

To have 5 DoF one needs constraints which arise if in

$$\frac{\partial \mathcal{H}}{\partial N^{\mu}} = \mathcal{H}_{\mu}(\pi^{ik}, \gamma_{ik}) + \frac{m^2}{2} \frac{\partial \mathcal{V}(N^{\mu}, \gamma_{ik})}{\partial N^{\mu}} = 0 \qquad (\star)$$

one has

$$\det\left(\frac{\partial^2 \mathcal{V}(N^{\alpha},\gamma_{ik})}{\partial N^{\mu}\partial N^{\nu}}\right) = 0$$

This is the Monge-Ampere equation, all its solutions have been studied. Only the dRGT choice is Lorentz-invariant. Other solutions define theories which reduce in the weak field not to Fierz-Pauli

$${\cal U}=(1/8)(h_{\mu
u}h^{\mu
u}-(h^{\mu}_{\mu})^2)$$

but to a non-Lorentz-invariant potential

$$\mathcal{U} = (1/8)(a\,h_{00}^2 + b\,h_{0k}^2 + c\,h_{ik}^2 + d\,h_{kk}^2 + e\,h_{00}h_{0k} + \ldots)$$

which could be relevant in cosmology. They have a higher cutoff

$$\Lambda_2 = \sqrt{\textit{m}M_{
m Pl}} \sim 1/(1{
m mm})$$

Summary

- Non-linear Fierz-Pauli models generically propagate 5+1 DoF, the extra DoF being the BD ghost rendering the theory unstable. For almost 40 years this was considered to be an inevitable obstacle.
- However, a careful analysis by dRGT has shown that there is a unique (up to 5 free parameters) way to choose the potential U such that a constraints arise in the Hamiltonian formulation. The constraints remove one DoF. The resulting theory propagates 5 DoF and is called ghost-free.
- The dRGT theory is valid up to the energies of the order $\Lambda_3 = (M_{\rm Pl}m^2)^{1/3} \sim 1/(10^3 {\rm km})$, so that it can be used to make predictions within Solar System.
- In the decoupling limit, $M_{\rm Pl} \to \infty$, $m \to 0$, fixed Λ_3 , the theory describes linear gravitons interacting with non-linear vector and scalar. The scalar part describes the scalar graviton polarization and has the Galileon structure.
- The theory cutoff can be raised even higher, up to $\Lambda_2 = \sqrt{M_{\rm Pl}m} \sim 1/mm$), via braking the Lorentz invariance.

Properties of the dRGT potential

Properties of the dRGT potential

$$S = M_{\rm Pl}^2 \int \left(\frac{1}{2} R - m^2 \mathcal{U}\right) \sqrt{-g} d^4 x$$

with

$$\mathcal{U} = \sum_{k=0}^4 b_k \mathcal{U}_k(\gamma)$$

where $\mathcal{U}_k(\gamma)$ are symmetric polynomials of eigenvalues λ_a of

$$\gamma^{\mu}_{\ \nu} = \sqrt{g^{\mu\alpha}f_{\alpha\nu}}$$

which means that

$$\gamma^{\mu}_{\ \alpha}\gamma^{\alpha}_{\ \beta}=\mathbf{g}^{\mu\alpha}\mathbf{f}_{\alpha\nu}$$

or

$$\hat{\gamma}^2 = \hat{g}^{-1}\hat{f}$$

 \mathcal{U}_k

$$\begin{aligned} \mathcal{U}_0(\gamma) &= 1\\ \mathcal{U}_1(\gamma) &= \sum_a \lambda_a = [\gamma]\\ \mathcal{U}_2(\gamma) &= \sum_{a < b} \lambda_a \lambda_b = \frac{1}{2}([\gamma]^2 - [\gamma^2])\\ \mathcal{U}_3(\gamma) &= \sum_{a < b < c} \lambda_a \lambda_b \lambda_c = \frac{1}{3!}([\gamma]^3 - 3[\gamma][\gamma]^2) + 2[\gamma^3])\\ \mathcal{U}_4(\gamma) &= \lambda_0 \lambda_1 \lambda_2 \lambda_3\\ &= \frac{1}{4!}([\gamma]^4 - 6[\gamma^2][\gamma]^2) + 8[\gamma][\gamma^3] + 3[\gamma^2]^2 - 6[\gamma^4]). \end{aligned}$$

Varying the action

$$S = M_{\rm Pl}^2 \int \left(\frac{1}{2} R - m^2 \sum_k b_k \mathcal{U}_k(\gamma) \right) \sqrt{-g} d^4 x$$

To vary this with respect to $g_{\mu\nu}$ one uses $\left[\hat{\gamma}^2 = \hat{g}^{-1}\hat{f}\right]$ hence

$$\delta\hat{\gamma}\hat{\gamma} + \hat{\gamma}\delta\hat{\gamma} = \delta\hat{g}^{-1}\hat{f}$$

This is the matrix Sylvestre equation for $\delta \hat{\gamma}$ whose solution is extremely complex. Fortunately, \mathcal{U}_k depend only on $[\gamma^n] \equiv [\hat{\gamma}^n]$. One has

$$\delta\hat{\gamma} + \hat{\gamma}\delta\hat{\gamma}\hat{\gamma}^{-1} = \delta\hat{g}^{-1}\hat{f}\hat{\gamma}^{-1} = \delta\hat{g}^{-1}\hat{g}\hat{\gamma}$$

and taking the trace

$$\delta[\hat{\gamma}] = \frac{1}{2} [\delta \hat{g}^{-1} \hat{g} \hat{\gamma}] \quad \text{or} \quad \delta \gamma^{\alpha}_{\ \alpha} = \frac{1}{2} \, \delta g^{\mu \alpha} g_{\alpha \beta} \gamma^{\beta}_{\ \mu} \equiv \frac{1}{2} \, \delta g^{\mu \alpha} \gamma_{\alpha \mu}$$
Similarly,

$$\delta(\gamma^{n})^{\alpha}_{\ \alpha} = \frac{n}{2} \, \delta g^{\mu\alpha} g_{\alpha\beta}(\gamma^{n})^{\beta}_{\ \mu} \equiv \frac{1}{2} \, \delta g^{\mu\alpha}(\gamma^{n})_{\alpha\mu}$$

One has
$$\boxed{(\gamma^{n})_{\mu\nu} = (\gamma^{n})_{\nu\mu}} / \text{check this } ! /$$

Field equations

$$G_{\mu\nu} = m^2 T_{\mu\nu}$$

with

$$T^{\mu}_{\nu} = g^{\mu\alpha} T_{\alpha\nu} = \tau^{\mu}_{\nu} - \mathcal{U} \,\delta^{\mu}_{\nu}$$

where

$$\begin{split} \tau^{\mu}_{\ \nu} &= \left\{ b_1 \, \mathcal{U}_0 + b_2 \, \mathcal{U}_1 + b_3 \, \mathcal{U}_2 + b_4 \, \mathcal{U}_3 \right\} \gamma^{\mu}_{\ \nu} \\ &- \left\{ b_2 \, \mathcal{U}_0 + b_3 \, \mathcal{U}_1 + b_4 \, \mathcal{U}_2 \right\} (\gamma^2)^{\mu}_{\ \nu} \\ &+ \left\{ b_3 \, \mathcal{U}_0 + b_4 \, \mathcal{U}_1 \right\} (\gamma^3)^{\mu}_{\ \nu} \\ &- \left\{ b_4 \, \mathcal{U}_0 \right\} (\gamma^4)^{\mu}_{\ \nu} \end{split}$$

Equivalent form

Consider the characteristic polynomial

$$f_{\gamma}(\lambda) \equiv \det(\hat{\gamma} - \lambda \hat{I}) = (\lambda_0 - \lambda)(\lambda_1 - \lambda)(\lambda_2 - \lambda)(\lambda_3 - \lambda)$$

= $\lambda^4 - \lambda^3 \sum_a \lambda_a + \lambda^2 \sum_{a < b} \lambda_a \lambda_b - \lambda \sum_{a < b < c} \lambda_a \lambda_b \lambda_c + \lambda_0 \lambda_1 \lambda_2 \lambda_3$
= $\mathcal{U}_0 \lambda^4 - \mathcal{U}_1 \lambda^3 + \mathcal{U}_2 \lambda^2 - \mathcal{U}_3 \lambda + \mathcal{U}_4$

The Hamilton-Caly theorem tells that

$$f_\gamma(\hat\gamma) = \mathcal{U}_0\,\hat\gamma^4 - \mathcal{U}_1\,\hat\gamma^3 + \mathcal{U}_2\,\hat\gamma^2 - \mathcal{U}_3\,\hat\gamma + \mathcal{U}_4 = 0$$

therefore

$$\begin{aligned} \tau^{\mu}_{\ \nu} &= \left\{ b_1 \, \mathcal{U}_0 + b_2 \, \mathcal{U}_1 + b_3 \, \mathcal{U}_2 \right\} \gamma^{\mu}_{\ \nu} \\ &- \left\{ b_2 \, \mathcal{U}_0 + b_3 \, \mathcal{U}_1 \right\} (\gamma^2)^{\mu}_{\ \nu} \\ &+ \left\{ b_3 \, \mathcal{U}_0 \right\} (\gamma^3)^{\mu}_{\ \nu} \\ &+ \left\{ b_4 \, \mathcal{U}_4 \right\} \delta^{\mu}_{\ \nu} \equiv \sigma^{\mu}_{\ \nu} + b_4 \, \mathcal{U}_4 \delta^{\mu}_{\ \nu} \end{aligned}$$

Field equations - simplified form

$$G^{\mu}_{\nu} = m^2 T^{\mu}_{\nu}$$

with

$$T^{\mu}_{\nu} = \sigma^{\mu}_{\nu} - \left(\sum_{k=0}^{3} b_{k} \mathcal{U}_{k}\right) \delta^{\mu}_{\nu}$$

where

$$\begin{split} \sigma^{\mu}_{\ \nu} &= \left\{ b_1 \, \mathcal{U}_0 + b_2 \, \mathcal{U}_1 + b_3 \, \mathcal{U}_2 \right\} \gamma^{\mu}_{\ \nu} \\ &- \left\{ b_2 \, \mathcal{U}_0 + b_3 \, \mathcal{U}_1 \right\} (\gamma^2)^{\mu}_{\ \nu} \\ &+ \left\{ b_3 \, \mathcal{U}_0 \right\} (\gamma^3)^{\mu}_{\ \nu} \end{split}$$

One more representation of \mathcal{U}_k

$$\begin{aligned} \mathcal{U}_{0}(\gamma) &= \frac{1}{4!} \epsilon_{\mu\nu\rho\sigma} \epsilon^{\mu\nu\rho\sigma} \\ \mathcal{U}_{1}(\gamma) &= \frac{1}{3!} \epsilon_{\mu\nu\rho\sigma} \epsilon^{\alpha\nu\rho\sigma} \gamma^{\mu}_{\ \alpha} \\ \mathcal{U}_{2}(\gamma) &= \frac{1}{2!2!} \epsilon_{\mu\nu\rho\sigma} \epsilon^{\alpha\beta\rho\sigma} \gamma^{\mu}_{\ \alpha} \gamma^{\nu}_{\ \beta} \\ \mathcal{U}_{3}(\gamma) &= \frac{1}{3!} \epsilon_{\mu\nu\rho\sigma} \epsilon^{\alpha\beta\gamma\sigma} \gamma^{\mu}_{\ \alpha} \gamma^{\nu}_{\ \beta} \gamma^{\rho}_{\ \gamma} \\ \mathcal{U}_{4}(\gamma) &= \frac{1}{4!} \epsilon_{\mu\nu\rho\sigma} \epsilon^{\alpha\beta\gamma\delta} \gamma^{\mu}_{\ \alpha} \gamma^{\nu}_{\ \beta} \gamma^{\rho}_{\ \gamma} \gamma^{\sigma}_{\ \delta} \end{aligned}$$

assuming that $\epsilon_{0123} = \epsilon^{0123} = 1$.

Tetrad formulation

Let us introduce two tetrads e^a_μ and f^a_μ such that

$$g_{\mu\nu} = \eta_{ab} e^a_{\ \mu} e^b_{\ \nu} \qquad \qquad f_{\mu\nu} = \eta_{ab} f^a_{\ \mu} f^b_{\ \nu}$$

Let e^{μ}_{a} abd f^{μ}_{a} be the inverse tetrads, so that

$$g^{\mu\nu} = \eta^{ab} e_a^{\ \mu} e_b^{\ \nu} \qquad f^{\mu\nu} = \eta^{ab} f_a^{\ \mu} f_b^{\ \nu}$$

and define $\Gamma^{\mu}_{\ \nu} = e_a^{\ \mu} f^a_{\ \nu}$ and also

$$\Gamma_{\mu\nu} = g_{\mu\alpha}\Gamma^{\alpha}_{\ \nu} = \eta_{ab}e^{a}_{\ \mu}\underbrace{e^{b}_{\ \alpha}e^{\ \alpha}_{\ c}}_{\delta^{b}_{c}}f^{c}_{\ \nu} = \eta_{ac}e^{a}_{\ \mu}f^{c}_{\ \nu} \equiv e^{a}_{\ \mu}f_{a\nu}$$

Let us assume that

$$\Gamma_{\mu\nu} = \Gamma_{\nu\mu} \Rightarrow e^{a}_{\ \mu} f_{a\nu} = e^{a}_{\ \nu} f_{a\mu} \Rightarrow e^{\mu}_{a} f_{b\mu} = e^{\mu}_{b} f_{a\mu} \quad (!)$$

then

$$\Gamma^{\mu}_{\ \alpha}\Gamma^{\alpha}_{\ \nu} = e^{\ \mu}_{a}f^{a}_{\ \alpha}e^{\ \alpha}_{b}f^{b}_{\nu} = e^{a\mu}f_{a\alpha}e^{\ \alpha}_{b}f^{b}_{\nu} = e^{a\mu}f_{b\alpha}e^{\ \alpha}_{a}f^{b}_{\ \nu} = g^{\mu\alpha}f_{\alpha\nu}$$
$$\Rightarrow \qquad \left[\Gamma^{\mu}_{\ \nu} = \gamma^{\mu}_{\ \nu} = \sqrt{g^{\mu\alpha}f_{\alpha\nu}}\right]$$

Useful identities

$$\frac{1}{4!} \epsilon_{abcd} \epsilon^{\mu\nu\alpha\beta} e^{a}_{\ \mu} e^{b}_{\ \nu} e^{c}_{\ \alpha} e^{d}_{\ \beta} = |e^{a}_{\ \mu}| \equiv e = \sqrt{-g}$$
$$\frac{1}{3!} \epsilon_{abcd} \epsilon^{\mu\nu\alpha\beta} e^{b}_{\ \nu} e^{c}_{\ \alpha} e^{d}_{\ \beta} = e e^{\mu}_{a}$$
$$\frac{1}{2!} \epsilon_{abcd} \epsilon^{\mu\nu\alpha\beta} e^{c}_{\ \alpha} e^{d}_{\ \beta} = e (e^{\mu}_{a} e^{\nu}_{b} - e^{\nu}_{a} e^{\mu}_{b})$$

Yet one more representation of \mathcal{U}_k

$$\begin{split} \mathcal{U}_{0}(\gamma)\sqrt{-g} &= \frac{1}{4!} \epsilon_{abcd} \epsilon^{\mu\nu\alpha\beta} e^{a}_{\ \mu} e^{b}_{\ \nu} e^{c}_{\ \alpha} e^{d}_{\ \beta} = e = \sqrt{-g} \\ \mathcal{U}_{1}(\gamma)\sqrt{-g} &= \frac{1}{3!} \epsilon_{abcd} \epsilon^{\mu\nu\alpha\beta} e^{a}_{\ \mu} e^{b}_{\ \nu} e^{c}_{\ \alpha} f^{d}_{\ \beta} = e e^{\ \beta}_{d} f^{d}_{\ \beta} = e \Gamma^{\beta}_{\ \beta} = e [\Gamma] \\ \mathcal{U}_{2}(\gamma)\sqrt{-g} &= \frac{1}{2!2!} \epsilon_{abcd} \epsilon^{\mu\nu\alpha\beta} e^{a}_{\ \mu} e^{b}_{\ \nu} f^{c}_{\ \alpha} f^{d}_{\ \beta} \\ &= \frac{1}{2} e \left(e^{\ \alpha}_{c} e^{\ \beta}_{d} - e^{\ \beta}_{c} e^{\ \alpha}_{d} \right) f^{c}_{\ \alpha} f^{d}_{\ \beta} = e \frac{1}{2} \left([\Gamma]^{2} - [\Gamma^{2}] \right) \\ \mathcal{U}_{3}(\gamma)\sqrt{-g} &= \frac{1}{3!} \epsilon_{abcd} \epsilon^{\mu\nu\alpha\beta} e^{a}_{\ \mu} f^{b}_{\ \nu} f^{c}_{\ \alpha} f^{d}_{\ \beta} = |f_{a}^{\ \mu}| e^{a}_{\ \mu} f^{\ \mu}_{a} \equiv f [\Gamma^{-1}] \\ \mathcal{U}_{4}(\gamma)\sqrt{-g} &= \frac{1}{4!} \epsilon_{abcd} \epsilon^{\mu\nu\alpha\beta} f^{a}_{\ \mu} f^{b}_{\ \mu} f^{c}_{\ \alpha} f^{d}_{\ \beta} = f \end{split}$$

Here $(\Gamma^{-1})^{\mu}_{\ \nu} = f_a^{\ \mu} e^a_{\ \mu}$ where $f_a^{\ \mu}$ is the inverse of $f^a_{\ \mu}$.

These expressions are equivalent to the previous ones provided that $\Gamma^{\mu}_{\ \nu} = \gamma^{\mu}_{\ \nu}$ which is the case if $\Gamma_{\mu\nu} = \Gamma_{\nu\mu}$.

Field equations – tetrad form

Varying with respect to $e^a_{\ \mu}$ gives

$$G_{\mu\nu} = m^2 T_{\mu\nu}$$

with

$$T_{\mu\nu} = -b_0 g_{\mu\nu} + b_1 \{ \Gamma_{\mu\nu} - [\Gamma] g_{\mu\nu} \} \\ + b_2 \frac{f}{e} \{ (\Gamma^{-2})_{\mu\nu} - [\Gamma^{-1}] (\Gamma^{-1})_{\mu\nu} \} \\ - b_3 \frac{f}{e} (\Gamma^{-1})_{\mu\nu}$$

where

$$\Gamma_{\mu\nu} = g_{\mu\alpha} \Gamma^{\alpha}_{\ \nu}, \ \ (\Gamma^{-1})_{\mu\nu} = g_{\mu\alpha} (\Gamma^{-1})^{\alpha}_{\ \nu}, \ \ (\Gamma^{-2})_{\mu\nu} = g_{\mu\alpha} (\Gamma^{-1})^{\alpha}_{\ \beta} (\Gamma^{-1})^{\beta}_{\ \nu}$$

Since $T_{\mu\nu} = T_{\nu\mu}$ this generically implies that $\Gamma_{\mu\nu} = \Gamma_{\nu\mu} = \gamma_{\mu\nu}$. Therefore the tetrad formulation is generically equivalent to the square root formulation.

For special values of b_k one can have $T_{\mu\nu} = T_{\nu\mu}$ but $\Gamma_{\mu\nu} \neq \Gamma_{\nu\mu}$

Form formalism

$$S = M_{\rm Pl}^2 \int \left(\frac{1}{2}R - m^2\mathcal{U}\right) \sqrt{-g} d^4x$$

$$= \int \left\{\frac{1}{4}\epsilon_{abcd}R^{ab} \wedge e^c \wedge e^d\right.$$

$$- m^2\epsilon_{abcd} \left(\frac{b_0}{4!}e^a \wedge e^b \wedge e^c \wedge e^d\right.$$

$$+ \frac{b_1}{3!}e^a \wedge e^b \wedge e^c \wedge f^d + \frac{b_2}{2!2!}e^a \wedge e^b \wedge f^c \wedge f^d$$

$$+ \frac{b_3}{3!}e^a \wedge f^b \wedge f^c \wedge f^d + \frac{b_4}{4!}f^a \wedge f^b \wedge f^c \wedge f^d\right)\right\}$$

with $e^a = e^a_{\ \mu} dx^{\mu}$ and $f^a = f^a_{\ \mu} dx^{\mu}$. In the ADM formulation $ds^2_g = -N^2 dt^2 + \gamma_{ik} (dx^i + N^i dt) (dx^k + N^k dt) = -e^0 \otimes e^0 + \delta_{ik} e^i \otimes e^k$

 $\Rightarrow N$ enters only $e^0 = Ndt$. The potential is linear in $e^0 \Rightarrow$ it is linear in N so that $\mathcal{V} = \mathcal{U}\sqrt{-g} = AN + B \Rightarrow \text{constraints} = 5 \text{ DoF}$.

Dimensional reconstruction

$$\begin{split} S_{\rm dRGT} &= \frac{1}{2} \, M_{\rm Pl}^2 \int \left(R + m^2 ([\mathcal{K}]^2 - [\mathcal{K}^2]) \right) \sqrt{-g} d^4 x, \quad \mathcal{K} = 1 - \sqrt{g^{-1} f} \\ S_5 &= \frac{1}{2} \, M_5^3 \int R_5 \sqrt{-g_5} d^5 x \quad \Rightarrow \quad 5 \text{ DoF} \\ ds_5^2 &= dy^2 + \mathbf{g}_{\mu\nu} dx^{\mu} dx^{\nu} = dt^2 + \eta_{ab} \mathbf{e}_{\mu}^a \mathbf{e}_{\nu}^b \\ S_5 &= \frac{1}{2} \, M_5^2 \int_{y_1}^{y_2} dy \int (R(\mathbf{g}) + [\mathcal{K}]^2 - [\mathcal{K}^2]) \sqrt{-\mathbf{g}} d^4 x \\ \mathcal{K}_{\mu\nu} &= \frac{1}{2} \, \partial_y \mathbf{g}_{\mu\nu} = \frac{1}{2} \, \eta_{ab} (\partial_y \mathbf{e}_{\mu}^a \mathbf{e}_{\nu}^b + \mathbf{e}_{\mu}^a \partial_y \mathbf{e}_{\nu}^b) \\ \mathbf{e}_{\mu}^a &\equiv \mathbf{e}_{\mu}^a(y_1), \quad f_{\mu}^a \equiv \mathbf{e}_{\mu}^a(y_2), \qquad \boxed{\partial_y \mathbf{e}_{\mu}^a \to \frac{\mathbf{e}_{\mu}^a(y_2) - \mathbf{e}_{\mu}^a(y_1)}{y_2 - y_1} \equiv m(e_{\mu}^a - f_{\mu}^a)} \\ \mathcal{K}_{\mu\nu} \to -m \left(g_{\mu\nu} - \eta_{ab} e_{\mu}^a f_{\nu}^a \right), \quad \mathcal{K}_{\nu}^\mu \to -m \left(\delta_{\nu}^\mu - \underbrace{\mathbf{e}_{\mu}^\mu f_{\nu}^a}_{\sqrt{g^{\mu\alpha} f_{\alpha\nu}}} \right) = -m \, \mathcal{K}_{\nu}^\mu \end{split}$$

Bigravity

Bigravity

$$S = \frac{1}{2\kappa_1} \int R(g) \sqrt{-g} d^4 x + \frac{1}{2\kappa_2} \int R(f) \sqrt{-f} d^4 x$$
$$- \frac{m^2}{\kappa_1 + \kappa_2} \int \mathcal{U} \sqrt{-g} d^4 x + S_{\text{mat}}[g, \Psi_g] + S_{\text{mat}}[f, \Psi_f]$$

with the same potential as before

$$\mathcal{U} = b_0 + b_1 \sum_{a} \lambda_a + b_2 \sum_{a < b} \lambda_a \lambda_b + b_3 \sum_{a < b < c} \lambda_a \lambda_b \lambda_c + b_4 \lambda_0 \lambda_1 \lambda_2 \lambda_3$$

There is interchange symmetry

$$g_{\mu
u} \leftrightarrow f_{\mu
u} \quad \kappa_1 \leftrightarrow \kappa_2 \quad b_k \leftrightarrow b_{4-k} \quad T^{\mathrm{mat}}_{\mu
u}(g) \leftrightarrow T^{\mathrm{mat}}_{\mu
u}(f)$$

7 DoF = one massive + one massless graviton

/Hassan and Rosen 2012/

Field equations

$$\begin{split} G_{\mu\nu}(g) &= m^2 \cos^2 \eta \ T_{\mu\nu}(g,f) + \kappa_1 T_{\mu\nu}^{\rm mat}(g) \\ G_{\mu\nu}(f) &= m^2 \sin^2 \eta \ T_{\mu\nu}(g,f) + \kappa_2 T_{\mu\nu}^{\rm mat}(f) \\ \end{split}$$
 with $\tan^2 \eta &= \kappa_2/\kappa_1$ and

$$T^{\mu}_{\nu} = g^{\mu\alpha} T_{\alpha\nu} = \tau^{\mu}_{\nu} - \mathcal{U} \,\delta^{\mu}_{\nu}$$
$$\mathcal{T}^{\mu}_{\nu} = f^{\mu\alpha} \mathcal{T}_{\alpha\nu} = -\frac{\sqrt{-g}}{\sqrt{-f}} \,\tau^{\mu}_{\nu}$$

with

$$\begin{split} \tau^{\mu}_{\ \nu} &= \left\{ b_1 \, \mathcal{U}_0 + b_2 \, \mathcal{U}_1 + b_3 \, \mathcal{U}_2 + b_4 \, \mathcal{U}_3 \right\} \gamma^{\mu}_{\ \nu} \\ &- \left\{ b_2 \, \mathcal{U}_0 + b_3 \, \mathcal{U}_1 + b_4 \, \mathcal{U}_2 \right\} (\gamma^2)^{\mu}_{\ \nu} \\ &+ \left\{ b_3 \, \mathcal{U}_0 + b_4 \, \mathcal{U}_1 \right\} (\gamma^3)^{\mu}_{\ \nu} \\ &- \left\{ b_4 \, \mathcal{U}_0 \right\} (\gamma^4)^{\mu}_{\ \nu} \end{split}$$

In the limit where $\kappa_2 \rightarrow 0$ and $f_{\mu\nu} \rightarrow \eta_{\mu\nu}$ the theory reduces to the dRGT massive gravity \Rightarrow dRGT is contained in the bigravity.

Flat space

Let us require the flat space $g_{\mu\nu} = f_{\mu\nu} = \eta_{\mu\nu}$ to be a solution. This imposes two conditions $T_{\mu\nu} = 0$, $T_{\mu\nu} = 0$. Requiring in addition *m* to be the FP mass of gravitons in flat space gives a third condition. These three conditions are fulfilled by adjusting the 5 b_k 's as $b_k(c_3, c_4)$

$$b_0 = 4c_3 + c_4 - 6, \quad b_1 = 3 - 3c_3 - c_4, \quad b_2 = 2c_3 + c_4 - 1$$

 $b_3 = -(c_3 + c_4), \quad b_4 = c_4$

Small fluctuations $g_{\mu\nu} = \eta_{\mu\nu} + \delta g_{\mu\nu}$ and $f_{\mu\nu} = \eta_{\mu\nu} + \delta f_{\mu\nu}$

$$h_{\mu\nu}^{\rm m} = \cos\eta\,\delta g_{\mu\nu} + \sin\eta\,\delta f_{\mu\nu} \qquad h_{\mu\nu}^{\rm 0} = \cos\eta\,\delta f_{\mu\nu} - \sin\eta\,\delta g_{\mu\nu}$$

fulfill

$$(\Box + \ldots)h_{\mu\nu}^{\rm m} = m^2(h_{\mu\nu}^{\rm m} - h^{\rm m}\eta_{\mu\nu})$$
$$(\Box + \ldots)h_{\mu\nu}^{\rm 0} = 0$$

Cosmologies and black holes

- Proportional solutions
- Non-bidiagonal solutions
- Hairy solutions

I. Proportional solutions

Proportional solutions

$$f_{\mu\nu} = C^2 g_{\mu\nu} \Rightarrow G^{\mu}_{\nu}(g) + \Lambda_g(C) \delta^{\mu}_{\nu} = 0, \quad G^{\mu}_{\nu}(f) + \Lambda_f(C) \delta^{\mu}_{\nu} = 0$$

where, with $P_m = b_m + 2b_{m+1}C + b_{m+2}C^2$,

$$\Lambda_g = m^2 \cos^2 \eta (P_0 + CP_1), \ \Lambda_f = m^2 \frac{\sin^2 \eta}{C^3} (P_1 + CP_2)$$

/show this/ Since $G^{\mu}_{\nu}(f) = G^{\mu}_{\nu}(g)/C^2 \Rightarrow \boxed{\Lambda_g = C^2 \Lambda_f} \Rightarrow$ quartic algebraic equation for C.

- Fours roots $C = \{C_k\}$
- $\Lambda_g(C_k)$ can be positive, negative or zero, depending on C_k . If $b_k = b_k(c_3, c_4)$ then C = 1 is a root and $\Lambda_g(1) = 0$.
- If $\Lambda_g > 0$ then there is de Sitter solution \Rightarrow late time acceleration. Since one has to have $\Lambda_g \sim 1/H^2 \Rightarrow$ either $m \sim 1/H$ or $\cos^2 \eta (P_0 + CP_1) \sim 1/H^2$.

Proportional solutions

- If there is matter then proportional solutions are possible if only the matter is fine-tuned such that T^μ_ν = T^μ_ν/C². However, matter becomes negligible at late times ⇒ proportional de Sitter is the late time attractor for generic cosmologies = inhomogeneous, anisotropic, with any matter.
- Proportional black holes are the same as in GR =Schwarzschild (Kerr)-(anti)-de Sitter. However, when perturbed, solutions show a mild ($\sim m$) instability due to the scalar graviton polarization mode.
- Proportional solutions exist only in bigravity, not in massive gravity with a fixed f-metric.
II. Decoupled solutions

$$T^{\mu}_{\ \nu} = \tau^{\mu}_{\ \nu} - \mathcal{U}\,\delta^{\mu}_{\nu} \qquad \qquad \mathcal{T}^{\mu}_{\ \nu} = -\frac{\sqrt{-g}}{\sqrt{-f}}\,\tau^{\mu}_{\ \nu}$$

with $\tau^{\mu}_{\ \nu} = \sigma^{\mu}_{\ \nu} + b_4 \mathcal{U}_4 \delta^{\mu}_{\ \nu}$

$$\begin{aligned} \sigma^{\mu}_{\ \nu} &= \ \left\{ b_1 \, \mathcal{U}_0 + b_2 \, \mathcal{U}_1 + b_3 \, \mathcal{U}_2 \right\} \gamma^{\mu}_{\ \nu} \\ &- \ \left\{ b_2 \, \mathcal{U}_0 + b_3 \, \mathcal{U}_1 \right\} (\gamma^2)^{\mu}_{\ \nu} + \left\{ b_3 \, \mathcal{U}_0 \right\} (\gamma^3)^{\mu}_{\ \nu} \end{aligned}$$

Let us require that $\sigma^{\mu}_{\ \nu} = 0$ then

$${\cal T}^{\mu}_{\ \nu} = -\Lambda_g \delta^{\mu}_{
u} \qquad \qquad {\cal T}^{\mu}_{\ \nu} = -\Lambda_f \delta^{\mu}_{
u}$$

with

$$\Lambda_g = \sum_{k=0}^3 b_k \mathcal{U}_k \qquad \qquad \Lambda_f = b_4 \frac{\sqrt{-g}}{\sqrt{-f}} \mathcal{U}_4 = b_4$$

and the field equations require these to be constants.

II. Non-bidiagonal solutions

Common SO(3)

$$ds_g^2 = -A dt^2 + \frac{dr^2}{B} + r^2 d\Omega^2$$

$$ds_f^2 = -C dT^2 + \frac{dU^2}{D} + U^2 d\Omega^2$$

A, B depend on t, r while C, D depend on T(t, r), U(t, r). Field equations reduce to

۲

$$U = Cr$$
 where $b_1 + 2b_2C + b_3C^2 = 0$

۲

$$G_{\mu
u}(g) + \Lambda_g g_{\mu
u} = 0 \qquad \quad G_{\mu
u}(f) + \Lambda_f f_{\mu
u} = 0$$

$$\Lambda_{g} = m^{2} \cos^{2} \eta (b_{0} + 2b_{1}C + b_{2}C^{2})$$

$$\Lambda_{f} = m^{2} \frac{\sin^{2}}{C^{2}} \eta (b_{2} + 2b_{3}C + b_{4}C^{2})$$

• A differential condition for T(t, r).

Explicit non-bidiagonal solutions

Schwarzschild-(anti)-de Sitter

$$ds_{g}^{2} = -\Sigma dt^{2} + \frac{dr^{2}}{\Sigma} + r^{2} d\Omega^{2}, \qquad \Sigma = 1 - \frac{2M_{g}}{r} - \frac{\Lambda_{g}}{3} r^{2}$$

$$ds_{f}^{2} = C^{2} \left(-\Delta dT^{2} + \frac{dr^{2}}{\Delta} + r^{2} d\Omega^{2} \right), \qquad \Delta = 1 - \frac{2M_{f}}{r} - \frac{C^{2} \Lambda_{f}}{3} r^{2}$$

$$\boxed{\frac{\Delta}{\Sigma} (\partial_{t} T)^{2} + \frac{\Delta \Sigma}{\Lambda - \Sigma} (\partial_{r} T)^{2} = 1}$$

infinitely many inequivalent solutions, the simplest one

$$T = t + \int \left(rac{1}{\Sigma} + rac{1}{\Delta}
ight) dr$$

- If $M_g = M_f = 0 \Rightarrow$ de Sitter cosmology, one can add matter.
- If $M_g \neq 0$, $M_f \neq 0 \Rightarrow$ black holes.
- If M_f = 0 and η → 0 then Λ_f ~ sin² η → 0 ⇒ f-metric is flat ⇒ all known cosmologies and black holes in massive gravity
 Same linear perturbations as in CP ⇒ scalar graviton is
- Same linear perturbations as in GR ⇒ scalar graviton is strongly bound

Massive gravity cosmologies

Cosmological constant $\Lambda = m^2(b_0 + 2b_1C + b_2C^2)$ where $b_1 + 2b_2C + b_3C^2 = 0$. The g-metric is de Sitter, f is flat

$$ds_{g}^{2} = \frac{3}{\Lambda} \left\{ -dt^{2} + dr^{2} + dx^{2} + dy^{2} + dz^{2} \right\}$$

$$1 = -t^{2} + r^{2} + x^{2} + y^{2} + z^{2} \equiv -t^{2} + r^{2} + R^{2}$$

$$ds_{f}^{2} = \frac{3C^{2}}{\Lambda} \left\{ -dT^{2} + dx^{2} + dy^{2} + dz^{2} \right\}$$

whear the Stuckelberg field T(t, r) fulfills

$$(\partial_t T)^2 - (\partial_r T)^2 = 1$$

Infinitely many solution. Only one solution T = t has been studied. When expressed in different slicings reads

Different slicings

• flat slicing
$$t = \sinh \tau + \frac{\rho^2}{2} e^{\tau}$$
, $r = \cosh \tau - \frac{\rho^2}{2} e^{\tau}$, $R = \rho e^{\tau}$

$$ds_g^2 = \frac{3}{\Lambda} \left(-d\tau^2 + e^{2\tau} (d\rho^2 + \rho^2 d\Omega^2) \right)$$

• close slicing $t = \sinh \tau$, $r = \cosh \tau \cos \rho$, $R = \cosh \tau \sin \rho$

$$ds_g^2 = rac{3}{\Lambda} \left(-d au^2 + \cos^2 au (d
ho^2 + \sinh^2
ho d\Omega^2)
ight)$$

In both cases f-metric is not diagonal and depends on ρ • close slicing $t = \sinh \tau \cosh \rho$, $r = \cosh \tau$, $R = \sinh \tau \sinh \rho$

$$ds_g^2 = \frac{3}{\Lambda} \left(-d\tau^2 + \sinh^2 \tau (d\rho^2 + \sinh^2 \rho d\Omega^2) \right)$$

$$ds_f^2 = \frac{3C^2}{\Lambda} \left(-\cosh^2 \tau d\tau^2 + \sinh^2 \tau (d\rho^2 + \sinh^2 \rho d\Omega^2) \right)$$

The two metrics share the same symmetries – "the only genuinely homogeneous and isotropic dRGT cosmology". However, it is unstable /Mukohyama et al/

Summary of non-bidiagonal solutions

- The only solutions which exist both in bigravity and massive gravity with fixed f. Exhaust all massive gravity solutions.
- Comprise an infinite family. The g-metric is the same s in GR – dS(AdS) or Schwarzschild-(A)dS – but the Stuckelberg scalars are different.
- For all of them the scalar graviton is strongly bound the linear perturbations are the same as in GR. The difference arises only in higher orders.
- Poorly understood. Only one solution (open FRLW cosmology of Mukohyama) was thoroughly studied and a ghost was detected at the third perturbation order. It is unclear if this result extends higher orders.

III. "Hairy" cosmologies

FLRW cosmologies with bidiagonal metrics

$$ds_{g}^{2} = -dt^{2} + e^{2\Omega} \left(\frac{dr^{2}}{1 - kr^{2}} + r^{2} d\Omega^{2} \right) / k = 0, \pm 1/$$

$$ds_{f}^{2} = -\mathcal{A}^{2} dt^{2} + e^{2\mathcal{W}} \left(\frac{dr^{2}}{1 - kr^{2}} + r^{2} d\Omega^{2} \right)$$

Friedmann equations $\xi = e^{\mathcal{W} - \Omega}/2$

$$\dot{\Omega}^{2} = \frac{\Lambda_{g} + \rho_{g}}{3} - \frac{k}{4} e^{-2\Omega} \qquad \frac{\dot{\mathcal{W}}^{2}}{\mathcal{A}^{2}} = \frac{\Lambda_{f} + \rho_{f}}{3} - \frac{k}{4} e^{-2\mathcal{W}}$$
$$\Lambda_{g} = m^{2} \cos^{2} \eta (b_{0} + 3b_{1}\xi + 3b_{2}\xi^{2} + b_{3}\xi^{3})$$
$$\Lambda_{f} = m^{2} \frac{\sin^{2} \eta}{\xi^{3}} (b_{1} + 3b_{2}\xi + 3b_{3}\xi^{2} + b_{4}\xi^{3})$$

Conservation condition $\left[\left(e^{\mathcal{W}}\right)^{\cdot} - \mathcal{A}\left(e^{\Omega}\right)^{\cdot}\right]\left(b_1 + 2b_2\xi + b_3\xi^2\right) = 0$

$$\Rightarrow \quad \xi^2(\Lambda_f + \rho_f) = \Lambda_g + \rho_g \quad (\star) \quad \Rightarrow \quad \xi = \xi(\rho_g, \rho_f) = \xi(\Omega)$$

Solutions

With $\mathbf{a} = e^{\Omega}$ equations reduce to

$$\dot{\mathsf{a}}^2 + \mathsf{U}(\mathsf{a}) = -k$$

where U(a) is defined by roots of the algebraic relation (\star)

Various solutions, at late times generically approaching the proportional de Sitter.

Anisotropic cosmologies

/Kei-ichi Maeda, M.S.V/

Bianchi class A types

$$ds_{g}^{2} = -dt^{2} + dl_{g}^{2} \qquad ds_{f}^{2} = -\mathcal{A}^{2}(t)dt^{2} + dl_{f}^{2}$$

$$dl_{g}^{2} = e^{2\Omega} \left(e^{2\beta_{+} + 2\sqrt{2}\beta_{-}}(\omega^{1})^{2} + e^{2\beta_{+} - 2\sqrt{2}\beta_{-}}(\omega^{2})^{2} + e^{-4\beta_{+}}(\omega^{3})^{2} \right)$$

$$dl_{f}^{2} = e^{2\mathcal{W}} \left(e^{2\mathcal{B}_{+} + 2\sqrt{2}\mathcal{B}_{-}}(\omega^{1})^{2} + e^{2\mathcal{B}_{+} - 2\sqrt{2}\mathcal{B}_{-}}(\omega^{2})^{2} + e^{-4\mathcal{B}_{+}}(\omega^{3})^{2} \right)$$

 $\langle \omega^a, e_b \rangle = \delta^a_b [e_a, e_b] = C^c_{ab} e_c \Rightarrow$ Bianchi I,II,VI,VII,VIII,IX Initial data at $t = t_0$: an anisotropic deformation of a finite size FLRW. f-sector is empty, g-sector contains radiation + dust. All solutions rapidly approach proportional backgrounds with constant $H = \dot{\Omega}$ and constant non-zero anisotropies= late time attractor.

Solutions

 $\dot{\Omega}$ for all Bianchi types (left) and anisotropy parameters for Bianchi IX (right). At late time anisotropies oscillate around constant values $\beta_{\pm} = \beta_{\pm}(\infty) + const. \times e^{-3Ht} \cos(\omega t)$. The shear energy

$$\dot{eta}_+^2+\dot{eta}_-^2\sim e^{-3H}\sim 1/{\sf a}^3$$

behaves as a non-relativistic (dark ?) matter, while in GR it is $\sim 1/{\bf a}^6.$

Chaos

In the past solutions show singularity where e^{Ω} and $e^{\mathcal{W}}$ vanish, anisotropies oscillate near singularity.

Sequence of Kasner-type periods during which eigenvalues of the three-metric

$$\alpha_a \sim t^{p_a}$$
 with $p_1 + p_2 + p_3 = p_1^2 + p_2^2 + p_3^1$
 $1/\mathbf{a}^6 \leftarrow \text{shear energy } \dot{\beta}_+^2 + \dot{\beta}_-^2 \rightarrow 1/\mathbf{a}^3$

Summary of "hairy" cosmologies

- Exist only in bigravity, comprise a large family. At late times approach the proportional de-Sitter with constant anisotropies late time acceleration.
- Early time behaviours depends crucially on values of b_k , m and η .
- For certain parameter values can be matched to the primary inflationary stage ⇒ candidates for describing physical cosmology.

Akrami, Kovisto, Amendola, Solomon, Flanders, Mortshel,

Hairy black holes

M.S.V., Phys.Rev. D85 (2012) 124043 Brito, Cardoso, Pani, Phys.Rev. D88 (2013) 064006

Static bidiagonal metrics

$$ds_{g}^{2} = -Q^{2}dt^{2} + \frac{R^{\prime 2}}{N^{2}}dr^{2} + R^{2}d\Omega^{2}$$
$$ds_{f}^{2} = -q^{2}dt^{2} + \frac{U^{\prime 2}}{Y^{2}}dr^{2} + U^{2}d\Omega^{2}$$

6 functions Q, N, R, q, Y, U depend on r, one can impose 1 gauge condition $(R = r) \Rightarrow 5$ independent equations

Equations reduce to a dynamical system for N, Y, U, one has

$$N^2 = \sum_{n \ge 1} a_n (r - r_h)^n, \quad Y^2 = \sum_{n \ge 1} b_n (r - r_h)^n, \quad U = u_h + \sum_{n \ge 1} c_n (r - r_h)^n$$

- Regular horizon is common for both metrics
- Black hole solutions comprise a two-parameter set labeled by r_h and $u_h \Rightarrow$ horizon radii measured by the two metric.
- Horizon surface gravities and temperatures are the same for both metrics.

Black holes with massive graviton hair

- For generic values of r_h , u_h solutions either show a curvature singularity at a finite distance away from r_h or approach asymptotically the AdS space /M.S.V. 2012/
- For specially fine-tuned r_h , u_h there are asymptotically flat black holes with $r_h \sim 1/m \Rightarrow$ they are cosmologically large /Brito, Cardoso, Pani 2013/

Wormholes

/S.V.Sushkov and M.S.V. 2015/ $\!$

Wormholes – bridges between universes

$$ds^2=-Q^2(r)dt^2+dr^2+R^2(r)(dartheta^2+\sin^2artheta darphi^2),$$

- $G_{\mu\nu} = 8\pi G T_{\mu\nu} \Rightarrow \rho + p < 0, p < 0 \Rightarrow$ violation of the null energy conditions \Rightarrow vacuum polarization, or exotic matter (phantoms), or gravity modifications (Gauss-Bonnet, braneworld).
- The structure of $T_{\mu\nu}$ and $T_{\mu\nu}$ in the bigravity theory generically violates the N.E.C. /Visser et al, 2012/

Wormholes – local solution

$$ds_{g}^{2} = -Q^{2}dt^{2} + dr^{2} + R^{2}d\Omega^{2}$$

$$ds_{f}^{2} = -q^{2}dt^{2} + \frac{U^{\prime 2}}{Y^{2}}dr^{2} + U^{2}d\Omega^{2}$$

$$Y = Y_1 r + Y_3 r^3 + \dots \quad Q = Q_0 + Q_2 r^2 + \dots \quad R = h + R_2 r^2 + \dots$$

$$q = q_0 + q_2 r^2 + \dots \qquad U = uh + U_2 r^2 + \dots$$

Expanding the field equations gives in the leading order algebraic equations for Q_0 and q_0 , whose solution exists if only $h \ge 1/\sqrt{3}$ (in units of 1/m) \Rightarrow wormholes are cosmologically large.

Wormhole solutions

The g-metric is globally regular and asymptotically AdS, has two AdS boundaries. The f-metric shows a Killing horizon at the point where q vanishes. The g-geodesics oscillate around $r = 0 \Rightarrow$ throat is traversable.

Summary of black holes and wormholes

- If the ghost-free bigravity indeed describes the world, then the astrophysical black holes are the same as in GR, up to a tiny (~ m) effect of accretion of massive modes.
- Theory also admits black holes with massive graviton hair. The are generically asymptotically AdS and exceptionally asymptotically flat (but very large).
- Theory admits Lorentzian wormholes. No exotic matter is needed. Wormholes are cosmologically large ⇒ in principle we all might live inside a wormhole.

Superluminality

- Characteristic surfaces of the dRGT massive gravity theory can be locally timelike ⇒ superluminal signals.
- This has also been detected in the Galileon models.
- It is unclear if this implies aucausality. It is also unclear if timelike characteristics can be global.

Energy

/M.S.V./

Spherical symmetry

$$ds_{g}^{2} = -N^{2}dt^{2} + \frac{1}{\Delta^{2}}(dr + \beta dt)^{2} + R^{2}d\Omega^{2}$$

$$ds_{f}^{2} = -dt^{2} + dr^{2} + r^{2}d\Omega^{2}$$

 N, β, R, Δ depend on t, r. Lapse N and shift β are non-dynamical. Dynamical variables are Δ, R and their momenta

$$p_{\Delta} = \frac{\partial \mathcal{L}}{\partial \dot{\Delta}}, \qquad p_{R} = \frac{\partial \mathcal{L}}{\partial \dot{R}},$$

Phase space is 4-dimensional, spanned by $(R, \Delta, p_R, p_\Delta)$.

$$H = N\mathcal{H}_0 + \beta\mathcal{H}_r + m^2\mathcal{V}$$

where

$$\mathcal{H}_{0} = \frac{\Delta^{3}}{4R^{2}} p_{\Delta}^{2} + \frac{\Delta^{2}}{2R} p_{\Delta} p_{R} + \Delta R R'^{2} + 2R (\Delta R')' - \frac{1}{\Delta}$$

$$\mathcal{H}_{r} = \Delta'_{\Delta} + 2\Delta' p_{\Delta} + R' p_{R}$$

and the potential

$$\mathcal{V} = \frac{NR^2P_0}{\Delta} + \frac{R^2P_1}{\Delta}\sqrt{(\Delta N + 1)^2 - \beta^2} + R^2P_2$$

with

$$P_n = b_n + 2b_{n+1}\frac{r}{R} + b_{n+2}\frac{r^2}{R^2}$$

Number of DoF

$$\begin{array}{lll} \frac{\partial \mathcal{H}}{\partial N} & = & \mathcal{H}_0 + m^2 \, \frac{\partial \mathcal{V}}{\partial N} = 0, \\ \frac{\partial \mathcal{H}}{\partial \beta} & = & \mathcal{H}_r + m^2 \, \frac{\partial \mathcal{V}}{\partial \beta} = 0. \end{array}$$

- If $m = 0 \Rightarrow 2$ first class constraints, $\mathcal{H}_0 = 0$ and $\mathcal{H}_r = 0 \Rightarrow 4 2 2 = 0$ DoF \Rightarrow no dynamics = Birkhoff theorem
- If m ≠ 0 ⇒ the second equations determines β, while the fist one gives the constraint

$$\mathcal{C}(\Delta, R, p_{\Delta}, p_R) = 0$$

Hamiltonian and constraints

$$H = \mathcal{E} + N\mathcal{C}, \qquad \mathcal{E} = \frac{Y}{\Delta} + m^2 R^2 P_2$$

with

$$C = \mathcal{H}_0 + Y + m^2 \frac{R^2 P_0}{\Delta}$$
 with $Y \equiv \sqrt{(\Delta \mathcal{H}_r)^2 + (m^2 R^2 P_1)^2}$

Secondary constraint

$$S = \{C, H\} = \frac{m^4 R^2 P_1^2}{2Y} \left(\Delta p_\Delta + R p_R\right) - Y\left(\frac{\Delta \mathcal{H}_r}{Y}\right)'$$
$$- \frac{\Delta^2 p_\Delta}{2R} \left\{\frac{m^4}{2\Delta Y} \partial_R (R^4 P_1^2) + m^2 \partial_R (R^2 P_2)\right\}$$
$$- \frac{m^2 \mathcal{H}_r}{Y} \left\{\Delta (R^2 P_2)' + R^2 \partial_r (P_0 - \Delta P_2)\right\} = 0$$

 $\Rightarrow 4-2=2 \times 1$ DoF. Energy $E = \int_0^\infty \mathcal{E} dr$ assuming $\mathcal{C} = \mathcal{S} = 0$.

Conclusions

- The energy is positive in the physical sector of the theory.
- Other sectors shows ghost-like features negative energies and tachyons, they are unphysical.
- The physical sector is protected from the unphysical ones by a potential barrier.

Remarks

- (A) The energy is claimed to be always positive if the parameters are chosen as $b_k \sim \delta_k^1$ /Comelli and Pilo/
- (B) There is a one-parameter family of theories with 5 + 1 DoF which contains (A) as a special case where the energy is claimed to be positive even in the presence of the ghost /Ogievetsky, Polubarinov 1965/.