# Q-balls in the U(1) gauged Friedberg-Lee-Sirlin model

Victor Loiko Department of Theoretical Physics and Astrophysics Belarusian State University, Minsk, Belarus

Thanks to my collaborators Ya. Shnir and I. Perapechka

Phys. Rev. D 98, 045018 Physics Letters B 797 (2019) 134810 Q-balls

Q-balls – non-topological solitons with time dependent field, carrying conserving Noether charge associated with symmetry.

- Certain types of boson stars with appropriate non-linear self-interaction are linked to the corresponding flat space solutions, which represent Q-balls. (*R. Friedberg, T. D. Lee and Y. Pang, Phys. Rev. D 35 (1987) 3640, B. Kleihaus, J. Kunz and M. List, Phys. Rev. D 72 (2005) 064002, J. Kunz, I. Perapechka and Y. Shnir, arXiv:1904.13379 [gr-gc])*
- These mini-boson stars contribute to early Universe evolution scenarios.(*R. Friedberg, T. D. Lee and Y. Pang, Phys. Rev. D 35, 3658 (1987), P. Jetzer, Phys. Rept. 220 (1992) 163, T. D. Lee, Phys. Rev. D 35 (1987) 3637.)*
- Q-balls may play an essential role in baryogenesis via the Affleck-Dine mechanism. (*I. Affleck and M. Dine, Nucl. Phys. B 249 (1985) 361.*)
- They were considered as candidates for dark matter. (A. Kusenko and M. E. Shaposhnikov, Phys. Lett. B 418 (1998) 46.)



# Previous investigations

JULY 1968

PHYSICAL REVIEW D VOLUME 13, NUMBER 10

Class of scalar-field soliton solutions in three space dimensions\*

15 MAY 1976

R. Friedberg Barnard College and Columbia University, New York, New York 10027

> T. D. Lee Columbia University, New York, New York 10027

A. Sirlin New York University, New York, New York 10003 (Received 19 January 1976)

A class of three-space-dimensional soliton solutions is given; these solitons are made of scalar fields and zero of a nontopological nature. The necessary conditions for having such solitons solutions are (i) the conservation of an additive quantum number, say Q, and (ii) the presence of a neutral (Q = 0) scalar field. It is shown that there exist two critical values of the additive quantum number, Q, and Q, with Q, smaller than Q. Soliton solutions are (i) the conservation of solutions exist for  $Q > Q_c$ . When  $Q > Q_c$ , the lowest soliton mass is < Qm, where m is the mass of the free charged meson field; therefore, there are solitons that are stable quantum mechanically as well as classically. When Q is between  $Q_c$  and  $Q_c$ , the solution mass is > Qm; nevertheles, the lowest-nergy soliton solutions are before are related to the stable, thenged quantum-mechanically mestable. The canonical quantization procedures are carried out. General theorems on stability are established, and specific numerical results of the soliton solutions are given.

R. Friedberg, T.D. Lee, A. Sirlin, Phys. Rev. D 13 (1976) 2739. **Q-BALLS\*** 

Sidney COLEMAN

Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

#### Received 4 July 1985

A large family of field theories in 3+1 dimensions contains a new class of extended objects. The existence of these objects depends on (among other conditions) the existence of a conserved charge, Q, associated with an ungauged unbroken continuous internal symmetry. These objects are spherically symmetric, and for large Q their energies and volumes grow linearly with Q; thus they act like homogeneous balls of ordinary matter, with Q playing the role of particle number. This paper proves the fundamental existence theorem for these Q-balls, computes their elementary properties, and finds their low-lying excitations.

S.R. Coleman, Nucl. Phys. B 262 (1985) 263, Nucl. Phys. B 269 (1986) 744, Erratum

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 9, NUMBER 7

#### Charged Particlelike Solutions to Nonlinear Complex Scalar Field Theories\*

GERALD ROSEN Drexel Institute of Technology, Philadelphia, Pennsylvania

#### (Received 15 September 1967)

It is shown that spatially localized singularity-free particlelike solutions exist for Lorentz-covariant complex scalar field theories with minimal gauge-invariant electromagnetic coupling, a positive-definite energy density, and suitably prescribed nonlinear self-interaction. Such a theory provides a perfectly consistent structural model on the classical level for a charged elementary particle of finite positive energy.



E. Radu, M.S. Volkov, Phys. Rep. 468 (2008) 101 p.52.

#### The model

A – gauge field

$$[U = \lambda |\Phi|^2 (|\Phi|^4 - a|\Phi|^2 + b)]$$

15

ξ

$$L = (\partial_{\mu}\psi)^{2} + D^{\mu}\phi^{\dagger}D_{\mu}\phi + m^{2}\psi^{2}\phi^{\dagger}\phi + U(\psi) - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}$$

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$

$$D^{\mu}\phi = (\partial_{\mu} + igA_{\mu})\phi$$

$$\phi - e^{i\alpha}\phi$$

$$U(\psi) = \mu(\psi^{2} - 1)^{2}$$

$$\int_{0}^{0} \int_{0}^{0} \int_{$$

#### Noether current

## Different ansatz

Spherically-symmetric model

Axially-symmetric model

 $\chi = X(r) \qquad \qquad \psi = X(r,\theta)$ 

 $\phi = Y(r)e^{-i\omega t} \qquad \phi = Y(r,\theta)e^{i(\omega t + n\varphi)}$ 

 $A_{\mu} = A_0(r) \qquad \qquad A_{\mu} dx^{\mu} = A_0(r,\theta) dt + A_{\varphi}(r,\theta) \sin \theta \, d\varphi$ 

### Spherical symmetry with $g \rightarrow 0$ (FLS)

$$L = \left(\partial_{\mu}\xi\right)^{2} + \left|\partial_{\mu}\phi\right|^{2} - m^{2}\xi^{2}|\phi|^{2} - U(\xi)$$

$$\xi = X(r); \qquad \phi = Y(r)e^{i\omega t}$$

$$\begin{cases} \frac{d^2 X}{d} r^2 + \frac{2}{r} \frac{dX}{dr} + 2\mu^2 X(1 - X^2) - m^2 X Y^2 = 0\\ \frac{d^2 Y}{dr^2} + \frac{2}{r} \frac{dY}{dr} + \omega^2 Y - m^2 X^2 Y = 0 \end{cases}$$

R. Friedberg. T.D. Lee and A. Sirlin. Phys. Rev. D 13 (1976)



 $\mu \rightarrow 0$ 



A. Levin, V. Rubakov arXiv:1010.0030v1 (2010)

### Spherically-symmetric case in FLS model



9

#### Spinning FLS Q-balls

$$\begin{split} \chi(r,\theta) &= A(r,\theta)\\ \phi(r,\theta,\varphi,t) &= B(r,\theta)e^{-i\omega t + iN\varphi} \end{split}$$

$$\begin{aligned} \frac{\partial^2 A}{\partial r^2} + \frac{2}{r}\frac{\partial A}{\partial r} + \frac{\cos\theta}{r^2\sin\theta}\frac{\partial A}{\partial \theta} + \frac{1}{r^2}\frac{\partial^2 A}{\partial \theta^2} - k^2B^2A - 2\lambda(A^2 - 1)A &= 0 \\ \frac{\partial^2 B}{\partial r^2} + \frac{2}{r}\frac{\partial B}{\partial r} + \frac{\cos\theta}{r^2\sin\theta}\frac{\partial B}{\partial \theta} + \frac{1}{r^2}\frac{\partial^2 B}{\partial \theta^2} - \frac{n^2}{r^2\sin^2(\theta)}B - k^2A^2B + v^2B &= 0 \\ \frac{\partial A}{\partial r}(0,\theta) &= 0; \quad \frac{\partial A}{\partial \theta}(r,0) &= 0 \\ A(\infty,\theta) &= 1; \quad \frac{\partial A}{\partial \theta}(r,\pi/2) &= 0 \end{aligned}$$

#### Profile functions of parity even solutions







$$\psi = X(r,\theta)$$
  
FLSM  $g \neq 0$   
 $\phi = Y(r,\theta)e^{i(\omega t + n\varphi)}$ 

 $A_{\mu}dx^{\mu} = A_0(r,\theta)dt + A_{\varphi}(r,\theta)\sin\theta \,d\varphi$ 

$$Q = \int d^3x (g A_0 + \omega) Y^2$$

$$J = \int d^3x T_{\varphi}^0 = 4\pi \int_0^{\pi} \int_0^{\infty} r^2 \sin\theta \, dr d\theta \{ (gA_0 + \omega) (n + gA_{\varphi} \sin\theta) Y^2 + J_{em} \}$$
Angular momentum

 $J_{em} = \frac{1}{r^2} \partial_{\theta} A_0 \left( A_{\varphi} \cos \theta + \sin \theta \, \partial_{\theta} A_{\varphi} \right) + \sin \theta \, \partial_r A_{\varphi} \partial_r A_0$  Contribution of EM field

### Energy and field equations

$$E = 2\pi \int_{0}^{\pi} \int_{0}^{\infty} r^{2} \sin \theta \, dr d\theta \left\{ X_{r}^{2} + Y_{r}^{2} + \frac{X_{\theta}^{2}}{r^{2}} + \frac{Y_{\theta}^{2}}{r^{2}} + \frac{1}{r^{2}} \left( gA_{\varphi} + \frac{n}{\sin \theta} \right)^{2} Y^{2} + (gA_{0} + \omega)^{2} Y^{2} + \mu(1 - X^{2})^{2} + m^{2} X^{2} Y^{2} + E_{em} \right\}$$

$$E_{em} = \frac{1}{2} \left\{ (\partial_r A_0)^2 + \frac{1}{r^2} (\partial_\theta A_0)^2 + \frac{1}{r^2} (\partial_r A_\varphi)^2 + \frac{1}{r^4 \sin^2 \theta} \left[ \partial_\theta (A_\varphi \sin \theta) \right]^2 \right\}$$

$$\begin{cases} \left(\frac{\partial^2}{\partial r^2} + \frac{2}{r}\frac{\partial}{\partial r} + \frac{1}{r^2}\frac{\partial^2}{\partial \theta^2} + \frac{\cos\theta}{r^2\sin\theta}\frac{\partial}{\partial \theta} + 2\mu^2(1-X^2) - m^2Y^2\right)X = 0\\ \left(\frac{\partial^2}{\partial r^2} + \frac{2}{r}\frac{\partial}{\partial r} + \frac{1}{r^2}\frac{\partial^2}{\partial \theta^2} + \frac{\cos\theta}{r^2\sin\theta}\frac{\partial}{\partial \theta} - \frac{1}{r^2}\left(gA_{\varphi} + \frac{n}{\sin\theta}\right)^2 + (gA_0 + \omega^2)^2 - m^2X^2\right)Y = 0\\ \left(\frac{\partial^2}{\partial r^2} + \frac{2}{r}\frac{\partial}{\partial r} + \frac{1}{r^2}\frac{\partial^2}{\partial \theta^2} + \frac{\cos\theta}{r^2\sin\theta}\frac{\partial}{\partial \theta} - \frac{1}{r^2\sin\theta} - 2g^2Y^2\right)A_{\varphi} = \frac{2ng}{\sin\theta}Y^2\\ \left(\frac{\partial^2}{\partial r^2} + \frac{2}{r}\frac{\partial}{\partial r} + \frac{1}{r^2}\frac{\partial^2}{\partial \theta^2} + \frac{\cos\theta}{r^2\sin\theta}\frac{\partial}{\partial \theta} - 2g^2Y^2\right)A_0 = 2g\omega Y^2\end{cases}$$

### Parity even and odd solutions

$$\left(\frac{\partial^2}{\partial r^2} + \frac{2}{r}\frac{\partial}{\partial r} + \frac{1}{r^2}\frac{\partial^2}{\partial \theta^2} + \frac{\cos\theta}{r^2\sin\theta}\frac{\partial}{\partial \theta} - \frac{1}{r^2}\left(gA_{\varphi} + \frac{n}{\sin\theta}\right)^2 + (gA_0 + \omega^2)^2 - m^2X^2\right)Y = 0$$

$$Y_l^n(\theta,\varphi) = \sqrt{\frac{2l+1}{4\pi} \frac{(l-n)!}{(l+n)!}} P_l^n(\cos\theta) e^{in\varphi}$$

n = 1  $Y_1^1, Y_2^1$ 



#### Boundary conditions

$$x = \frac{r/r_0}{1 + r/r_0} \in [0, 1]$$

$$\partial_r X \Big|_{r=0,\theta} = 0 \qquad \partial_r Y \Big|_{r=0,\theta} = 0 \qquad X \Big|_{r=\infty,\theta} = 1 \qquad Y \Big|_{r=\infty,\theta} = 0 \qquad \partial_\theta X \Big|_{r,\theta=0} = 0 \qquad Y \Big|_{r,\theta=0} = 0$$

$$\partial_r A_0 \Big|_{r=0,\theta} = 0 \qquad \partial_r A_\varphi \Big|_{r=0,\theta} = 0 \qquad A_0 \Big|_{r=\infty,\theta} = 0 \qquad A_\varphi \Big|_{r=\infty,\theta} = 0 \qquad \partial_\theta A_0 \Big|_{r,\theta=0} = 0 \qquad A_\varphi \Big|_{r,\theta=0} = 0$$



# Energy on frequency



The total energy of the parity-even n=1 gauged Q-balls is shown as function of the angular frequency  $\omega$  for some set of values of mass parameter  $\mu$  at g = 0.1 (left plot) and for some set of values of the gauge coupling g at  $\mu$ =0.25 (right plot).





The profiles of the field components of the gauged Friedberg–Lee–Sirlin Q-balls X (left plot) and Y (right plot) at  $\theta = \pi/2$  are plotted on four different branches, at  $\omega = 0.60$ ,  $\mu = 0.01$  and g = 0.1.



$$E_k = F_{k0} \qquad B_k = \varepsilon_{kmn} F^{mn}$$



Magnetic field orientation of the gauged n=1 Q-ball at g=0.1,  $\mu$ =0.01 and  $\omega$ =0.60 (electric branch); the magnetic flux in the y-z plane (left plot) and in the x-y plane (right plot).



$$E_k = F_{k0} \qquad B_k = \varepsilon_{kmn} F^{mn}$$



Magnetic field orientation of the gauged n=1 Q-ball at g=0.1,  $\mu$ =0.01 and  $\omega$ =0.60 (magnetic branch); the magnetic flux in the y-z plane (left plot) and in the x-y plane (right plot).





The total energy of the parity-even n=1 gauged Q-balls vs the charge Q for some set of values of mass parameter  $\mu$  at g=0.1 (left plot) and for some set of values of the gauge coupling g at  $\mu$ =0.25 (right plot)

E. Radu, M.S. Volkov, Phys. Rep. 468 (2008) 101 p.65.

#### Vortons in Witten model



# Conclusions

- Existence of new type of axially-symmetric solutions of the U(1) gauged FLS model was confirmed.
- They exhibit examples of the configurations with both the electric charge and toroidal magnetic field.
- Gauged Q-balls exist for relatively small values of the gauge coupling, increase of the coupling yields stronger electromagnetic repulsion which makes the configuration unstable.
- Minimal allowed value of frequency depends on strength of gauge coupling.
- Presence of toroidal magnetic field may lead to new interesting phenomena in astrophysics and cosmology while investigation of rotating boson stars and corresponding hairy black holes.

# Thanks for your attention!

# Additional slides

## References

- [1] N.S. Manton, P. Sutcliffe, Topological Solitons, Cambridge University Press, 2004.
- [2] T.D. Lee, Y. Pang, Phys. Rep. 221 (1992) 251.
- [3] Y.M. Shnir, Topological and Non-Topological Solitons in Scalar Field Theories, Cambridge University Press, 2018.
- [4] G. Rosen, J. Math. Phys. 9 (1968) 996, 999.
- [5] R. Friedberg, T.D. Lee, A. Sirlin, Phys. Rev. D 13 (1976) 2739.
- [6] S.R. Coleman, Nucl. Phys. B 262 (1985) 263, Nucl. Phys. B 269 (1986) 744, Erratum.
- [7] A. Levin, V. Rubakov, Mod. Phys. Lett. A 26 (2011) 409.
- [8] V. Loiko, I. Perapechka, Y. Shnir, Phys. Rev. D 98 (4) (2018) 045018.
- [9] D.J. Kaup, Phys. Rev. 172 (1968) 1331.
- [10] R. Ruffini, S. Bonazzola, Phys. Rev. 187 (1969) 1767.
- [11] R. Friedberg, T.D. Lee, Y. Pang, Phys. Rev. D 35 (1987) 3640.
- [12] R. Friedberg, T.D. Lee, Y. Pang, Phys. Rev. D 35 (1987) 3658.
- [13] B. Kleihaus, J. Kunz, M. List, Phys. Rev. D 72 (2005) 064002.
- [14] B. Kleihaus, J. Kunz, M. List, I. Schaffer, Phys. Rev. D 77 (2008) 064025.
- [15] Y. Brihaye, B. Hartmann, Phys. Rev. D 79 (2009) 064013.
- [16] J. Kunz, I. Perapechka, Y. Shnir, arXiv:1904. 13379 [gr-qc].
- [17] P. Jetzer, Phys. Rep. 220 (1992) 163.
- [18] T.D. Lee, Phys. Rev. D 35 (1987) 3637.
- [19] I. Affleck, M. Dine, Nucl. Phys. B 249 (1985) 361.
- [20] A. Kusenko, M.E. Shaposhnikov, Phys. Lett. B 418 (1998) 46.

- [21] K.M. Lee, J.A. Stein-Schabes, R. Watkins, L.M. Widrow, Phys. Rev. D 39 (1989) 1665.
- [22] C.H. Lee, S.U. Yoon, Mod. Phys. Lett. A 6 (1991) 1479.
- [23] E. Witten, Nucl. Phys. B 249 (1985) 557.
- [24] E.J. Copeland, N. Turok, M. Hindmarsh, Phys. Rev. Lett. 58 (1987) 1910.
- [25] R.L. Davis, E.P.S. Shellard, Phys. Lett. B 207 (1988) 404.
- [26] R.L. Davis, E.P.S. Shellard, Nucl. Phys. B 323 (1989) 209.
- [27] J. Garaud, E. Radu, M.S. Volkov, Phys. Rev. Lett. 111 (2013) 171602.
- [28] A. Kusenko, M.E. Shaposhnikov, P.G. Tinyakov, Pis'ma Zh. Eksp. Teor. Fiz. 67 (1998) 229, JETP Lett. 67 (1998) 247.
- [29] K.N. Anagnostopoulos, M. Axenides, E.G. Floratos, N. Tetradis, Phys. Rev. D 64 (2001) 125006.
- [30] I.E. Gulamov, E.Y. Nugaev, A.G. Panin, M.N. Smolyakov, Phys. Rev. D 92 (4) (2015) 045011.
- [31] I.E. Gulamov, E.Y. Nugaev, M.N. Smolyakov, Phys. Rev. D 89 (8) (2014) 085006.
- [32] A.G. Panin, M.N. Smolyakov, Phys. Rev. D 95 (6) (2017) 065006.
- [33] A.Y. Loginov, V.V. Gauzshtein, Phys. Rev. D 99 (6) (2019) 065011.
- [34] T. Shiromizu, Phys. Rev. D 58 (1998) 107301.
- [35] M.S. Volkov, E. Wohnert, Phys. Rev. D 66 (2002) 085003.
- [36] E. Radu, M.S. Volkov, Phys. Rep. 468 (2008) 101.
- [37] W. Schönauer, R. Weiß, Efficient vectorizable PDE solvers, J. Comput. Appl. Math. 27 (1989) 279; M. Schauder, R. Weißand, W. Schönauer, The CADSOL Program Package, Universität Karlsruhe, 1992, Interner Bericht Nr. 46/92.
- [38] T. Tamaki, N. Sakai, Phys. Rev. D 81 (2010) 124041.
- [39] B. Kleihaus, J. Kunz, S. Schneider, Phys. Rev. D 85 (2012) 024045.
- [40] E. Nugaev, A. Shkerin, arXiv:1905. 05146 [hep -th]

# Solutions of axially-symmetric FLS





$$Q = 8\pi\omega \int_{0}^{\pi/2} d\theta \int_{0}^{\infty} B^2 r^2 \sin\theta \, dr$$

$$E = 4\pi \int_{0}^{\pi/2} d\theta \int_{0}^{\infty} \left( \omega^{2} f^{2} + (\partial_{r} A)^{2} + (\partial_{r} B)^{2} + \frac{1}{r^{2}} (\partial_{\theta} A)^{2} + \frac{1}{r^{2}} (\partial_{\theta} B)^{2} + kA^{2}B^{2} + \frac{n^{2}B^{2}}{r^{2}\sin^{2}(\theta)} + V \right) r^{2} \sin\theta \, dr$$



### Scalar hair and energy curves





ω

ω

# Energy density









### Electromagnetic energy density





III

IV

E. Radu, M.S. Volkov, Phys. Rep. 468 (2008) 101 p.65.

#### Vortons in Witten model

