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Introduction

Motivation

Why to be interested in the sigma model?

Non-trivial theory with analytical solutions

Continuum limit of spin chain for N = 3

Similarity to the Yang-Mills theory

Simple setup to study non-perturbative phenomena
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The models

Linear model

Work in 1 + 1 Minkowski space-time
There are N real scalar fields
The action of the model

S =

∫
d2x

(
1

2
(∂na)2 − g

2N
(n2 − r)2

)
.

can be rewritten via an auxiliary field λ

S =

∫
d2x

(
1

2
(∂na)2 − λ

2
((na)2 − r) +

Nλ2

8g

)
.
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The models

The nonlinear model

g →∞ limit correspond to the nonlinear case

S =

∫
d2x

(
1

2
(∂na)2 − λ

2
((na)2 − r) +

�
�
�S
S
S

Nλ2

8g

)
.

Action for O(N) model:

S =
1

2

∫
d2x

(
(∂µn

a)2 − λ
(
(na)2 − r

))
.

λ is a Lagrange multiplier
Constraint nana = 1 defines a N − 1 dimensional sphere
r can be considered as coupling constant
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The models

Large N approximation

Consider non-linear model case.
The action is quadratic in n, so they can be integrated∫

DnDλe iS[na, λ] = exp(iSeff )

Seff =
iN

2
tr log(−∂2 − λ) +

1

2

∫
d2x

(
(∂µn)2 − λ

(
(n)2 − r

))
Here we separated ”classic” and ”quantum” parts na = na

q + nla,
(la)2 = 1. (Background field technique)
If N � 1 saddle point approximation is valid.
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Gap equation and its solutions

Homogeneous solution

Look for time-independent solutions with λ = λ(x); n = n(x).
The equations are

n2 = r − N
∑

n

|fn(x)|2

2En
; (−∂2x + λ(x))fn(x) = E 2

n fn(x);

(−∂2x + λ(x))n(x) = 0.

Standard solution:

λ = const = m2; n = 0.

Mass is generated via dimensional transmutation.
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Gap equation and its solutions

Solitonic solution

Another solution (Nitta and Yoshii, 2017):

λ = m2

(
1− 2

cosh2mx

)
; n2 =

N

2π

1

cosh2mx
.

fk (x) =
ik −m tanhmx√

m2 + k2
e ikx ; E 2

k = k2 + m2

|fk |2 = 1− m2

m2 + k2
1

cosh2mx
.



Inhomogeneous solutions

Gap equation and its solutions

Properties of the solution

What is the energy of the soliton?

E = −Nm

π
.

Calculation was performed by two independent ways

calculation of effective action value

calculation of the average of energy-momentum tensor in
inhomogeneous background

The energy is lower than the energy of homogeneous state.
How does the ground state of the model look like?
There are zero modes corresponding to the rotations of the n field
in the internal space. Integration over them yields the volume of
SN−1
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Gap equation and its solutions

Zero modes problem

Consider again the gap equation

n2 = r − N
∑

n

|fn(x)|2

2En
; (−∂2x + λ(x))fn(x) = E 2

n fn(x);

(−∂2x + λ(x))n(x) = 0.

If the second equation has non-trivial solution, there is an
eigenvalue E0 = 0.
The sum in the first equation is not well-defined.
Explanation (no rigorous proof yet!) - zero modes correspond to
the rotational moduli of the soliton

na = nla.
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Gap equation and its solutions

Zero modes problem

n2 = r − N
∑

n

|fn(x)|2

2En
; (−∂2x + λ(x))fn(x) = E 2

n fn(x);

(−∂2x + λ(x))n(x) = 0.

We should consider zero modes separately
Integration over the zero modes yields moduli space volume
contribution to the partition functions.
Quantized zero modes describe low-energy dynamics of the solitons
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Gap equation and its solutions

Gross-Neveu model

S =
1

2

∫
d2x

(
ψ̄a(i ∂̂ − σ)ψa − rσ2

)
It is fermionic part of SUSY O(N) model.
Homogeneous solutions are

σ = ±m ∼
〈
ψ̄ψ
〉

There are also kink solutions

σ = ±m tanhmx .

They correspond to the O(N) soliton:

λ = σ2 − ∂xσ.
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Gap equation and its solutions

Periodic solution

Similarly to Gross-Neveu case look for solution

λ(x) = m2
1ν(2sn2(m1x ; ν)− 1); n ∼ dn(m1x ; ν).

Properties

Corresponds to the ground state of Gross-Neveu model at
finite density

Ill-defined in O(N) case on R2 due to IR divergences

Formally, energy is lower than in homogeneous case
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Discussion

About ground state

Homogeneous solution is (probably) not the ground state at
large N

Periodic solution is not well-behaved on the whole plane

Euclidean correlators in O(N) model decay exponentially
(Kopper, 1998)

We should consider contributions from many soliton
configurations



Inhomogeneous solutions

Discussion

Other comments and questions

Topological nature of the soliton

Difference between O(N) and CPN−1 and role of the gauge
field

SUSY generalizations

Connection with classical solutions

Phase transitions in the model on circle (Flachi et al.,
arXiv:1907.00120; Fujimori et al., arXiv:1907.06925 — lattice
simulation)
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Discussion

Linear model

The action of the model

S =

∫
d2x

(
1

2
(∂na)2 − λ

2
((na)2 − r) +

Nλ2

8g

)
.

We can consider case g < 0 if g is small enough.
The system is stable due to quantum corrections to the potential
(it can be seen from the gap equation)
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Discussion

Linear model

There is also a case

S =

∫
d2x

(
1

2
(∂na)2 − 1

2
m2

0n
2
a −

g

4N
(n2a)2

)
.

S =

∫
d2x

(
1

2
(∂na)2 − 1

2
λn2a +

N

4g
(λ−m2

0)2
)
.
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Discussion

Linear model

We consider the potential

V = an2 + bn4

in following cases

a < 0, b > 0 (Higgs like potential)

a > 0, b < 0 (Classically unstable)

a > 0, b > 0
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Discussion

Higgs-like case

Higgs-like case (g > 0) or ”unstable” (g < 0) case

S =

∫
d2x

(
1

2
(∂na)2 − λ

2
((na)2 − r) +

Nλ2

8g

)
.

For negative g we must have (Abbott, 1976)

|g |
2πm2

< 1

λ = m2 is physical mass of the particles
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Discussion

Inhomogeneous solution

We use the same ansatz

λ = m2

(
1− 2

cosh2mx

)

n2 =
N

2π

(
1− 2πm2

g

)
1

cosh2mx
.

If g < 0 there is always solution.
If g > 0 then g should be large enough.
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Discussion

Energy

E = −Nm

π

(
1 + log

Λ

m
− πm2

3g

)
First term is the conformal anomaly contribution,
second – change of point of renormalization
third – value of classical potential energy.
Using homogeneous gap equation we obtain

E = −Nm

π

(
1 +

2πm2

3g

)
.
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Discussion

Energy

E = −Nm

π

(
1 +

2πm2

3g

)
.

n2 =
N

2π

(
1− 2πm2

g

)
1

cosh2mx
.

For positive coupling g > 0 energy is always negative, but the
solution exists only for strong enough coupling.

For negative coupling there is always a solution, but the energy can
change sign. Are there phase transitions?



Inhomogeneous solutions

Discussion

a > 0 b > 0

The solution is

n2 =
N

2π

1

cosh2mx

(
1− 2πm2

g

)
.

and exists at strong coupling.
The energy is

E = −Nm

π
− 4m3

3g
N.

and always negative.
The situation is very similar to Higgs-like potential.
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Discussion

Finite temperature

We again consider non-linear model

Integration over frequencies – summation due to periodic
conditions in (Euclidean) time. Gap equation is modified.

Energy is also modified – there are contributions from thermal
excitations.

At high temperatures the energy of the soliton is positive.

Thermal phase transition?

There is no interesting effect due to chemical potential.
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Discussion

Conclusions

There are solutions with negative energy

When we vary the parameters of the model, such solutions
can appear and disappear, their energy can change sign.

If there are negative energy solution, the true ground state
structure is probably complicated.

There might be phase transitions.

Thank you for attention!
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