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Reliable astronomical data support the existence of four epochs of the
Universe global evolution:

m inflation,
m a radiation dominated era,
® a matter dominated one

m the present dark energy epoch.
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M Initial inflation and dark energy domination are both characterized by
an accelerated expansion of the Universe with almost constant Hubble
parameter H.

B The other epochs of the Universe evolution are described by
power-law solutions with H = J/t, where J is a positive constant.
Bl Power-law solutions with H = J/t correspond to models with a
perfect fluid whose EoS parameter reads wy, = —1 4+ 2/(3.J).
H The radiation dominated epoch corresponds to solutions with J = 1/2,
Bl The matter dominated one corresponds to J = 2/3
B To consider modified gravity models, it is therefore important to
check for the existence of de Sitter and power-law solutions in the
discussed models.
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There are two basic motivations which lead cosmologists to modify
gravity:
m The first one is an attempt to connect gravity with quantum physics,
at least in a perturbative way, by including quantum correction terms
to Einstein’s equations.

m The second is an interest to describe the Universe evolution in a more
natural way, without the dark energy and the dark matter
components, which turn out to be avoidable in the modified models.
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There are lots of ways to deviate from Einstein's gravity:
m F(R) gravity
m Addition of higher-derivative terms to the Einstein—Hilbert action
m Non-local gravity

Most of the non-local cosmological models are inspired by string theory !
or by quantum field theory 2. Usually, nonlocal models include an analytic
function of either the d'Alembertian operator [J or the inverse
d’'Alembertian operator (0=!. Note that models including
F(OR,PR,...,0°'R,072R,...) have been investigated as well 3

). C. Hwang and H. Noh, Phys.Rev. D 71, 063536 (2005)[gr-qc/0412126]

%S. Deser, R.P. Woodard,Phys. Rev. Lett. 99 (2007) 111301, [arXiv:0706.2151]

33, Jhingan, S. Nojiri, S.D. Odintsov, M. Sami, |. Thongkool, and S. Zerbini, Phys.
Lett. B 66 (2008) 424, [arXiv:0803.2613]; J. Kluson, J. High Energy Phys. 1109 (2011)
001, [arXiv:1105.6056]
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The following class of non-local gravity models has been proposed to
explain current cosmic acceleration without dark energy:

Mp)?
2

Sy = /d4x\/—_g{ [R(1+ f(O'R)) — 24] +£m} . (1)
Here f is a differentiable function,

A is the cosmological constant,

L is the matter Lagrangian,

O is covariant d'Alembertian for a scalar field. The term f(O"!'R) is can
be understand as a prefactor for the Newtonian gravitational constant, and
explain weakening of gravity at cosmological scales.
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In the FLRW metric, the d'Alembert operator acting on a scalar A(t) can
be expressed as

1d dA
OA= — vV—g9"° —— 3=
,/_ % (V=9970) A a3dt<a dt)’
while its inverse operator reduces to a double integration:

t  _t

_ dt
0 0= - [ S5 [ et Ao,

fo 7o

where o and 1 are two initial boundaries for the integrals.
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The non-local action (1) can be rewritten in the "localized” form by
introducing two scalar fields  and &:

5= [ater L R+ ) +E@n-R) -2 +Lu}. ()

By the variation over &, we obtain [In = R.
Substituting 7 = (0~ R into (2), one reobtains action (1).*

*S. Nojiri, S.D. Odintsov, Phys. Lett. B 659 (2008) 821, arXiv:0708.0924
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For the local formulation, a reconstruction procedure has been made in
T.S. Koivisto, Phys. Rev. D 77 (2008) 123513, arXiv:0803.3399,

E. Elizalde, E.O. Pozdeeva, S.Yu. Vernov, Class. Quantum Grav.30 (2013)
035002, arXiv:1209.5957.

This procedure shows that the simplest choice of a such function f(n) that
the model has de Sitter and power-law solutions is

f(n) = foe™,

with fo and « nonzero real parameters.

The exponential f(CJ"!R) has been studied in many papers:

S. Nojiri, S.D. Odintsov, Phys. Lett. B 659 (2008) 821; S. Jhingan, S. Nojiri,
S.D. Odintsov, M. Sami, |. Thongkool, S. Zerbini, Phys. Lett. B 663 (2008)
424;T.S. Koivisto, Phys. Rev. D 77 (2008) 123513;S. Nojiri, S.D. Odintsov,

M. Sasaki, Y.l. Zhang, Phys. Lett. B 696 (2011) 278; E. Elizalde, E.O. Pozdeeva,
S.Yu. Vernov,Phys. Rev. D 85 (2012) 044002;E. Elizalde, E. O. Pozdeeva,

S. Yu. Vernov and Y. |. Zhang, J. Cosmol. Astropart. Phys. 1307 (2013) 034.
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The de Sitter solutions with a constant nonzero H = Hj can be presented
in the form:

o = poe—301+wm) Hot
n(t) = —4Ho(t — to),

£(t) = _%e—mm}(t—to) + 30?006—3H0(t—t0) ¢ at a+3/4,
£(t) = —folco + 3Ho(t — to))e 3Hol=t) g5 at o =3/4

where ¢g and t are arbitrary constants,

A 6(1 — 20)H?
fo=—-1-— ,00:—( kQ) Ofo,

SHE' wm = —14+4a/3
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At constant EoS parameter wy,, = P,/ pm (wm # —1) there are the
following solutions:
n(t) = Ptt=3n — % In(t — to), where 11, and tg are integration
constants. Note that cases n = 1/3 and n = 1/2 are excluded from our
analysis.

: _ _ m _ 2n—1)
We specify 1 =0, so f(t) = fo (%) where m = 6a"gn_1 ,

E(t) = o+ &1t — to)1 3 + (33;17:7711)_]”? (%)m for m # 1 — 3n, and

() =& —mfy (%)mln (%) , for m=1-3n,
where &y, &1, & and t; are integration constants.
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In the case n = 1/2, m = 0 which corresponds R = 0.
n(t) = gst™2 + o, E(1) =&t + g,

where 13, 14, 13, and &4 are integral constants. In the case A = 0,
conditions on the constants are following:

4
P3 =0, & =—1— foe¥* + ngPo, w=1/3

while pg, 14, &3 are to be determined by the initial conditions. In the case
n=2/3 a= %m we have:

n(e) =~ It — 1),

f(t)=§o+§1(t—to)_l+1f0 (i) CmA 1

+
—1
t t
£(t) =&+ fo (—) In (-) , m=-1
to t
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Non-local models with the Gauss-Bonnet term of a quite general form
have been proposed in 2008%, where accelerating cosmological solutions
have been studied.

Also, a localization procedure that transforms a non-local model with the
inverse d'Alambert operator acting on the Gauss-Bonnet term into a
model of string-inspired scalar-Gauss-Bonnet gravity has been proposed in
this paper.

We continue to investigate this class of non-local models, and check for
the existence of de Sitter and power-law solutions.

°S. Capozziello, E. Elizalde, S. Nojiri, and S.D. Odintsov, Phys. Lett. B 671 (2009)
193, [arXiv:0809.1535]
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We consider the non-local model with the Gauss—Bonnet term G:
Sni :/dw‘l\/_[ PlR-i—CQ”lD nGns — Al €)

where Mp; is the Planck mass, C' and A are constants,
ny are natural numbers, and the Gauss—Bonnet term

G = R*> — 4R, R"™ + R, s R"°P.

R, is the Ricci tensor, R is the Ricci scalar.
[J is the d'Alembertian operator in the metric g, acting on a scalar.
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To get local model corresponding to (3) we introduce scalar fields
Sy = /dx‘%/_—gx

M2 -
Too B+ CG" bny + 6001 —G™) + ;&(D% —dj-1) — A

Varying this action under §;, we get

Oor=6",  j=1,
D¢j:¢j—17 J=2,...,n2.
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This action can be presented in the form:

M2 na nz—1
Sp1 = /dx‘*,/——g bR+ CGM by —61G™ 4 6506 = Y 1165 — A
=1 =1

Thus, variation under ¢; leads to

Oén, = —CG™,  j=ny,
D£j=£j+1, j:l,...,nQ—l.
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Action Sz, can be linearized with respect to the Gauss-Bonnet term, by
adding one more scalar field in the action. Let us consider the part of
action Sy, that includes the Gauss-Bonnet term:

Syon = [ da'V=g10G™ s — E16™).
To linearize this action with respect to G we introduce a scalar field o and
flo) = Co™¢p, — &10™,
and get that the following equivalent action:
Sans = [ d'v=g | (G -0)+ 1] -
:/dx4ﬂ [(n100”1_1¢n2 — n3§10”3_1) (G—o0)+Co™ o, — 510"3]

Varying over o, one gets o = G and the action Sygp. Note that the scalar
field o is not dynamical, because it has no kinetic term.
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So, the initial action Sy, can be written in the following scalar-tensor
form:

S:/da:4\/—_g

M3, "2
PRy FG-V = g™ ’
o R+ F k:19 08k Pk

where we use the following redesignation

F = n100"1_1¢n2 — ngéro™L,
no—1

V = —Co™@p,(1-m)—&o™mg—1)+ > _ &ndi+A.
k=1
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Varying the local action S thus obtained, we get the following equations

MI%Z 24 1 124 9" = &
[W—4DF] [R — 59" R+ 5 ;aﬂﬁka &k (4)

ng g
— Z@“qﬁka'/fk == 7‘/ =
k=1

1
—F [5 9""G — 2RRM + ARIR" — 2RM°T RV, + 4R“p"”Rpg]

+2R(D"D"F) — 4(D,D"F)R"? — 4(D,D"F)R"
+4¢"(D,Dy F)R* — 4(D,D,F)R""".
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Let us consider the trace of Eq. (4). After setting R**?” = R"P"? and
guwR"P"’ R,y = R’ R,e = R R, We get

1
G’ 59“”9 — 2RR"™ +ARGR" — 2RMTR]  + ARV Rpp | =0
Using R**D,, D, F' = RUF and
—8(D,D"F)Rl +16(D,D,F)R? — 4(D,D,F)R/® = 4(D,D,F)R"°,

we obtain the
e trace equation:

Mpy (i aggbkaagk) — 92V — R(OF) =0.

167 ol
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We consider the spatially flat FLRW universe with the interval
ds* = —dt* + a*(t) (da? + da3 + dz3) .
In this metric one gets (i, j,m,l = 1,2, 3):

(H + H?)

i050 _ p0i0j _ _ p0ij0 _  pi00j _
R =R = —R =—-R = >

ij,

ijm H2
R — ?(&'mélj — o)y

Y = a®Hoy, b; =Lh = Hé,
. - (H+3H?
B — 3+ m?, ri- ) g 5

R=6(H+2H?), G=24H*(H+ H?)

where the Hubble parameter H = a/a and dots mean the time derivatives.
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We assume that all scalar fields depend on time only and get the following
expressions including to components equations

OF = -3HF - F
D,D,F = 82,F — T 0;F
D'DYF = g'?g"P(92,,F — Tk ,0,.F)

from where
H

o)
a
D°D°F = DyDyF = F, D'D°F =D°DF =0.

D'D'F = — = F, D,D;F = —d’HF,
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Egs. (4) in the FLRW metric read as follows

M2 12 ,. . 1 .
2Mpr 1 TV — 3
167 2 > (‘M’“) 5V = ~12H°F,
k=1
(382 + 217) M2, N I
g +16H <H2+H>F+8H2F+Z¢k£kzv (5)
T

k=1
From here we get
. 3M?2 .. M2 .
SH3F — 40FH? + 8—”}12 +8HFH + S—PZH -V =0. (6
7 Y

Note that Egs. (5) and (6) are third order differential equations with
respect to the Hubble parameter.

E. O. Pozdeeva (SIMP MSU)  Localization procedure and integrable solutiorFlelmholtz International School Cosmology, S



If the Hubble parameter is a constant: H = Hj, then the Gauss-Bonnet
term reads G = 24H6L = Gp and 0 = Gy. As a consequence, the
corresponding field equations (4) get transformed into the following system
of linear first order differential equations, with constant coefficients,

b1 =11,

Y1 = —3Hoy1 — Gy,

b=,  §=2,...,m,

Vi = —3Hopj — dj—1, J=2,...,n0.
The system (7) has the following solution

n3
_Y%°

;= Py(t)e 3Hot — :
¢J J( )6 ]'(3HO)J

t/ + F5(t),
where P;(t) and P;(t) are (j — 1)-degree polynomials of ¢ with coefficients
that include 25 arbitrary parameters.

E. O. Pozdeeva (SIMP MSU)  Localization procedure and integrable solutiorFlelmholtz International School Cosmology, S



Analogously, the system (4) acquires the following form
£ +3Ho&; +&41=0, j=1,...,na—1,
gnz + 3H0$n2 - ngl =0,
and the solution reads

cgn
(n2 = j + 1)I(3Ho)">—7+1

& = Q;(t)e M + t2 77D 1 Qy(t),

where Q;(t) and Q;(t) are polynomials in ¢ of degree (ny — j) + 1.
To check for the existence of de Sitter solutions, one must substitute the
solutions of the field equations thus obtained into Egs. (5) and (6).
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In the case when n; = ny = ns = 1 the Sitter solutions have been found in ©.
To get de Sitter solution in the model is non-trivial problem. For example, we
checked that de Sitter solution is absent in case ny = 1, no = 2, ng = 1. We
obtain de Sitter solution the case ny = 2.

8S. Capozziello, E. Elizalde, S. Nojiri, and S.D. Odintsov, Phys. Lett. B 671 (2009)
193, [arXiv:0809.1535]
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Let us consider the case ny = 2.
The field equations

—¢1 — 3Hor = Gi2, ~¢2 — 3Hogs = ¢n
and
—&y — 3Hoéy = —CGY, —& — 3Hoé1 = &
have the following solutions:

n3
o1 = A1673H0t — th + B,

3H,
Ay —3Hot 9° 2 %’ By
=(Zlt+4 ot 4 J0_42_ —L)t+B
& (SHO i 2) T Y7 o7H3 " 3H, ) T
Ch —3Hot ngl 2 ggl Dy
=(= e — 2L )t+ Dy,
= (3H0t+02> ¢ rE2 ¢ \orEs " 3H, )T

_ Gy
52 = Cle 3Hot + Cﬁt + CDL
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Substituting these expressions into Eq. (5),

2
m2Me —1 qu & | - —V_ —12H3F,
0 16m RSk 0

we see that this equation can be satisfied only if n; + ng = 4.
Also, we get the following restriction to the integration constants

. . _242M (20, —1)A,CHY ")
A =0, C1=0, C= 331776(2n1—7) )

331776(n1—2) Hy° "1 D1 +24m1442368 H, ' 4"
By =— .
- (n1-2) : :
These restrictions are not valid for n; = 2. A is connect with parameters
3H3MZ,  8192C(13n1+4)H}?
A= - ¥k A L 94m OBy (ny — 1) HY™ +

14—4ny

(
94-™M 331776 Dy(ny — 3)HL64m _ HTTTBCEM_ODH, 7
ni
24-2M331776C DI H, "
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Consequently, the value of A fixes the value of one of the integration
constants: By for ny = 3 or Dy for n; = 1.

Summing up, we do get explicitly de Sitter solutions for models with

ny =1 ns =2, n3=3and n; =3, ny =2, ng = 1. And we have also
discovered that models with ny = 2 and other values of n; and n3 do not

have de Sitter solutions’.

"Straightforward substitution of the field expressions when n; = nz = 2 already
proves the absence of the de Sitter solutions in this case.
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The search of power-law solutions with H = .J/t is more complicated. We
consider the case when nq or ng is equal to 1. If n; = 1 and n3 = 1, then

V=8, F=Ch-4

with the following form for the field equations
Uer =G, Uge = ¢1,

L& =-CG,  U& =&,
where G = 24(J — 1).J3/t.
Using these formulas, we immediately obtain the form of Eq. (6)

(382 + ) M3,

B 8T
The model with n; =1 and n3 = 1 yields power law solutions with
H = J/t at J =2/3 and J = 3. The corresponding scalar fields admit

two types of expressions.
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The first type of solutions corresponds to

by = —CLESOH | s 1 K@T+)
L= 37-1 2 JC(J—-1)
_ t’K _ K3 tme it _ Ch3m37 4J3 In(t)
$2 = 57611 — opr—n — sar—isii) — 31 +Ca

g = 4CREO _ Kaptt | g,

3J—1 3J—1
5 _ 40]3

where in the case J =2/3, C} = 7&1)668, , while in the case J = 3, either
Cl =0 or 03 = 0.
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Another type of solutions, with the same Hubble parameters, is given by

=4 %,
e oL,
&= 403?i?(t) - CC?,} 31J+1 - 4Jt(2JK1) - 6(3tj;311f]{kl) + Ky,
& =8 Sfl — 45 CJs +3 J((:aj]+11))7

where in the case J = 2/3 we have the additional condition
K= —%g%f, while in the case J = 3, either C5 = 0 or K1 = 0. Note

that the form of the solutions obtained excludes a few values of J, which
must be checked separately.
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We analyze two types of non-local gravity models: the non-local gravity
model with function from inverse Dalambertian acting to Ricci scalar and
the Gauss-Bonnet non-local gravity model.

In the first class of models with exponential type of modification function
f(OIR):

Mp)?
2

Sy = /d4x\/—_g{ [R(1+ f(O'R)) —2A] + Em}

we presented
m the de Sitter and power-law solutions

m including power-law solutions with J = 1/2 and J = 2/3, correspond
to radiation dominated and matter-dominated phase epochs.
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In the Gauss-Bonnet non-local gravity model:
M2
Snp = /deA\/TQ |:16PZR+ cgmoT" g™ 4+ Ly, -
s

and obtain

m in the specific case no = 2, de Sitter solutions exist only in these two
cases: for ny =1 and ng = 3, or for n; = 3 and n3 = 1. Both these
models yield no power-law solutions;

m if ng =1and ng > 1 (or ny > 1 and ng = 1, respectively), then
power-law solutions do not exist;

m in the case n; = n3 = 1, power-law solutions with H = J/t exist only
for J =2/3 and J = 3. Therefore, the model with ny = 1, ny = 2,
and ng = 1, without additional matter, is suitable in order to describe
the matter-dominated phase of the Universe evolution that
corresponds to J = 2/3.
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Thank for your attention
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