

Dark Side of the Universe III

Alexander Vikman

08.08. 2019

FZU
Institute of Physics
Academy of Sciences
CEICO

Decoupling vacuum energy from spacetime curvature

$$
G_{\mu \nu}-T_{\mu \nu}-\frac{1}{4} g_{\mu \nu}(G-T)=0
$$

invariant under vacuum shifts of energy-momentum

$$
T_{\mu \nu} \rightarrow T_{\mu \nu}+\Lambda g_{\mu \nu}
$$

Bianchi identity + energy-momentum conservation

$$
\begin{gathered}
\nabla_{\mu} G^{\mu \nu}=0+\nabla_{\mu} T^{\mu \nu}=0 \Longrightarrow \partial_{\mu}(G-T)=0 \\
G_{\mu \nu}-T_{\mu \nu}-\widehat{\Lambda}-g_{\mu \nu}^{\text {Integration constant }}=0
\end{gathered}
$$

What is the action for

the traceless Einstein field equations?

$$
G_{\mu \nu}-T_{\mu \nu}-\frac{1}{4} g_{\mu \nu}(G-T)=0
$$

No Trace

Weyl invariance?

$$
g_{\mu \nu}=\Omega^{2} \cdot h_{\mu \nu}
$$

$$
g_{\mu \nu} \rightarrow \Omega^{2}(x) g_{\mu \nu} \quad \frac{\delta S}{\delta \Omega^{2}}=\frac{g^{\mu \nu}}{\Omega^{2}} \cdot \frac{\delta S}{\delta g^{\mu \nu}}=0
$$

Mimetic* vector-tensor theory

Ansatz: $\quad g_{\mu \nu}=h_{\mu \nu} \cdot\left(\nabla_{\alpha}^{h)} V^{\alpha}\right)^{1 / 2}$

$$
\nabla_{\alpha}^{h)} h_{\mu \nu}=0
$$

Weyl invariance for the vector field of conformal weight 4

$$
\begin{aligned}
h_{\mu \nu} & =\Omega^{2}(x) h_{\mu \nu}^{\prime} \\
V^{\mu} & =\Omega^{-4}(x) V^{\prime \mu}
\end{aligned}
$$

*Ideologically similar to scalar-tensor Mimetic Dark Matter of Chamseddine and Mukhanov (2013)

Action

$$
S_{g}[h, V]=-\frac{1}{2} \int d^{4} x \sqrt{-h}\left[\left(\nabla_{\alpha}^{h)} V^{\alpha}\right)^{1 / 2} R(h)+\frac{3}{8} \cdot \frac{\left(\nabla_{\mu}^{h} \nabla_{\alpha}^{h} V^{\alpha}\right)^{2}}{\left(\nabla_{\sigma}^{h} V^{\sigma}\right)^{3 / 2}}\right] .
$$

Equations of motion

$$
\begin{aligned}
& \frac{1}{\sqrt{-h}} \cdot \frac{\delta S}{\delta V^{\mu}}=\frac{1}{4} \partial_{\mu}(T-G)=0 \\
& \frac{1}{\sqrt{-h}} \cdot \frac{\delta S}{\delta h^{\alpha \beta}}=\frac{\sqrt{\nabla_{\alpha}^{h)} V^{\alpha}}}{2}\left[T_{\alpha \beta}-G_{\alpha \beta}-\frac{1}{4} g_{\alpha \beta}\left(T-G-\frac{1}{\nabla_{\alpha}^{h)} V^{\alpha}} V^{\lambda} \partial_{\lambda}(T-G)\right)\right]=0 \\
& \quad G_{\mu \nu}-T_{\mu \nu}-\frac{1}{4} g_{\mu \nu}(G-T)=0
\end{aligned}
$$

More Familiar Action

$$
\begin{gathered}
S[h, \varphi, V, \lambda]=\int d^{4} x \sqrt{-h}\left[-\frac{1}{2}(\partial \varphi)^{2}-\frac{1}{12} \varphi^{2} R(h)-\frac{\lambda}{72} \varphi^{4}+\frac{\lambda}{2} \cdot \nabla_{\alpha}^{h)} V^{\alpha}\right] \\
\text { wrong sign } \quad \text { Lagrange multiplier } \\
\nabla_{\alpha}^{h)} V^{\alpha}=\left(\frac{\varphi^{2}}{6}\right)^{2} \quad
\end{gathered}
$$

V^{μ} Stückelberg Freiherr von Breidenbach zu Breidenstein und Melsbach field

Weyl transformations

$$
\begin{aligned}
& h_{\mu \nu}=\Omega^{2}(x) h_{\mu \nu}^{\prime} \\
& \varphi=\Omega^{-1}(x) \varphi^{\prime} \\
& V^{\mu}=\Omega^{-4}(x) V^{\prime \mu} \\
& \lambda=\lambda^{\prime}
\end{aligned}
$$

Weyl-invariant variables

$$
\begin{aligned}
& g_{\mu \nu}=\frac{\varphi^{2}}{6} h_{\mu \nu} \\
& \varphi=\varphi \\
& W^{\mu}=\left(\frac{\varphi^{2}}{6}\right)^{-2} V^{\mu} \\
& \Lambda=\frac{\lambda}{2}
\end{aligned}
$$

$$
\left.S\left[g, W, \Phi_{m}\right]=\int d^{4} x \sqrt{-g}\left[-\frac{1}{2} R(g)+\Lambda\left(\nabla_{\mu}^{g}\right) W^{\mu}-1\right)\right]+S_{m}\left[g, \Phi_{m}\right]
$$

Henneaux-Teitelboim unimodular gravity

Global degree of freedom $\quad \mathscr{T}(t)=\int d^{3} \mathbf{x} \sqrt{-g} W^{\prime}(t, \mathbf{x})$

$$
\mathscr{T}\left(t_{2}\right)-\mathscr{T}\left(t_{1}\right)=\int_{t_{1}}^{t_{2}} d t \int d^{3} \mathbf{x} \sqrt{-g}
$$

$$
\mathscr{T}(t)=\int d^{3} \mathbf{x} \sqrt{-h} V^{t}(t, \mathbf{x})
$$

Global degree of freedom

$$
\mathscr{T}(t)=\int d^{3} \mathbf{x} \sqrt{-h} V^{t}(t, \mathbf{x})
$$

For the action

$$
S_{g}[h, V]=-\frac{1}{2} \int d^{4} x \sqrt{-h}\left[\left(\nabla_{\alpha}^{h} V^{\alpha}\right)^{1 / 2} R(h)+\frac{3}{8} \cdot \frac{\left(\nabla_{\mu}^{h)} \nabla_{\alpha}^{h)} V^{\alpha}\right)^{2}}{\left(\nabla_{\sigma}^{h)} V^{\sigma}\right)^{3 / 2}}\right] .
$$

The conjugated canonical momentum of
Λ

Ostrogradsky Instability/Ghosts

- Ostrogradsky's theorem on Hamiltonian instability Richard P. Woodard arXiv:1506.02210

For systems with higher order non-degenerate equations of motion the Hamiltonian is always linear in canonical momenta!

If there are N order derivatives in the Lagrangian, the Hamiltonian is linear in $\mathrm{N}-1$ canonical momenta!

Hence the Hamiltonian is necessarily unbounded from below!

Conformal weight four is unusual for a vector field

Can one find a more usual construction?

Axionic Cosmological Constant

$$
\begin{aligned}
& g_{\mu \nu}=h_{\mu \nu} \cdot \sqrt{F_{\alpha \beta} \widetilde{F^{\alpha}} \alpha \beta} \\
& \widetilde{F}^{\alpha \beta}=\frac{1}{2} \cdot \frac{\epsilon^{\alpha \beta \mu \nu}}{\sqrt{-h}} \cdot F_{\mu \nu}
\end{aligned}
$$

Weyl-Invariance for $h_{\mu \nu}=\Omega^{2}(x) h_{\mu \nu}^{\prime}$

$$
\begin{gathered}
g_{\mu \nu}=\frac{h_{\mu \nu}}{(-h)^{1 / 4}} \cdot \sqrt{\mathscr{P}} \\
g_{\mu \nu}=h_{\mu \nu} \cdot \sqrt{F_{\alpha \beta} F^{\alpha \beta}} \quad \text { Munkonyama et a11 (2018) }
\end{gathered}
$$

$$
F_{a \beta} \widetilde{F}^{a \beta}=\nabla_{a}^{h h} C^{\alpha}
$$

Chern-Simons Current

$$
C^{\alpha}=\operatorname{tr} \frac{\varepsilon^{\alpha \beta \gamma \delta}}{\sqrt{-h}}\left(\boldsymbol{F}_{\beta \gamma} \boldsymbol{A}_{\delta}-\frac{2}{3} i g \boldsymbol{A}_{\beta} \boldsymbol{A}_{\gamma} \boldsymbol{A}_{\delta}\right)
$$

composite vector variable of conformal weight four!

$$
S_{g}[h, A]=-\frac{1}{2} \int d^{4} x \sqrt{-h}\left[\left(F_{\alpha \beta} \widetilde{F}^{\alpha \beta}\right)^{1 / 2} R(h)+\frac{3}{8} \cdot \frac{\left(\nabla_{\mu}^{h}\left(F_{\alpha \beta} \widetilde{F}^{\alpha \beta}\right)\right)^{2}}{\left(F_{\sigma \rho} \widetilde{F}^{\sigma \rho}\right)^{3 / 2}}\right]
$$

matter couples to $g_{\mu \nu}=\frac{\varphi^{2}}{6} \cdot h_{\mu \nu}$ where $F_{\alpha \beta} \widetilde{F}^{\alpha \beta}=\left(\frac{\varphi^{2}}{6}\right)^{2}$

$$
\begin{aligned}
& \frac{1}{\sqrt{-h}} \cdot \frac{\delta S}{\delta A_{\nu}}=\widetilde{F}^{\mu \nu} \partial_{\mu}(T-G)=0 \\
& \frac{1}{\sqrt{-h}} \cdot \frac{\delta S}{\delta h^{\alpha \beta}}=\frac{\varphi^{2}}{12}\left[T_{\alpha \beta}-G_{\alpha \beta}-\frac{1}{4}(T-G) g_{\alpha \beta}\right]=0
\end{aligned}
$$

Benign Higher Derivatives

$$
\begin{aligned}
& S_{g}[h, A]=-\frac{1}{2} \int d^{4} x \sqrt{-h}\left[\left(F_{\alpha \beta} \widetilde{F}^{\alpha \beta \beta}\right)^{1 / 2} R(h)+\frac{3}{8} \cdot \frac{\left(\mathrm{D}_{\mu}^{h}\left(F_{\alpha \beta \beta} \widetilde{F}^{\alpha \beta}\right)\right)^{2}}{\left(F_{\sigma \rho} \widetilde{F}^{\sigma \rho}\right)^{3 / 2}}\right] \\
& F_{a \beta} \widetilde{F}^{\alpha \beta}=\left(\frac{\varphi^{2}}{6}\right)^{2} \\
& S[h, \varphi, A, \lambda]=\int d^{4} x \sqrt{-h}\left[-\frac{1}{2}(\partial \varphi)^{2}-\frac{1}{12} \varphi^{2} R(h)-\frac{\lambda}{72} \varphi^{4}+\frac{\lambda}{2} \cdot F_{\alpha \beta} \widetilde{F^{\alpha \beta}}\right]
\end{aligned}
$$

Axionic Cosmological Constant?

Weyl-invariant variables

$$
\begin{gathered}
g_{\mu \nu}=\frac{\varphi^{2}}{6} h_{\mu \nu} \quad \Lambda=\frac{\lambda}{2} \quad A_{\mu} \\
S[g, A, \Lambda]=\int d^{4} x \sqrt{-g}\left[-\frac{1}{2} R(g)+\Lambda\left(F_{\alpha \beta} \widetilde{F}^{\alpha \beta}-1\right)\right]
\end{gathered}
$$

PHYSICS REPORTS (Review Section of Physics Letters) 104, Nos. 2-4 (1984) 143-157. No:th-Holland, Amsterdam

Foundations and Working Pictures in Microphysical Cosmology

Frank WILCZEK

I would like to briefly mention one idea in this regard, that I am now exploring. It is to do something for the Λ-parameter very similar to what the axion does for the θ-parameter in QCD, another otherwise mysteriously tiny quantity. The basic idea is to promote these parameters to dynamical variables, and then see if perhaps small values will be chosen dynamically. In the case of the

Another way of thoughts

Cleaning up the cosmological constant

Ian Kimpton and Antonio Padilla

School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, UK

We now observe that the vacuum energy coming from particle physics enters the action via a term of the form $-2 \Lambda \int d^{4} x \sqrt{-\tilde{g}}$. This has no effect on the dynamics provided

$$
\begin{equation*}
\frac{\delta}{\delta \phi_{i}} \int d^{4} x \sqrt{-\tilde{g}}=0 \tag{2.1}
\end{equation*}
$$

This is only possible when $\tilde{g}_{a b}$ is a composite field, for which $\sqrt{-\tilde{g}}$ is the integrand of a topological invariant, and/or a total derivative. Note that our method is distinct from unimodular gravity in which the metric determinant is constrained to be unity [13].

Dark Energy equation of state

$$
w=p / \varepsilon \quad w(a)=w_{0}+(1-a) w_{a}
$$

PLANCK Collaboration 2013

Maybe DE is locally dynamical similarly to Inflation?

We did not care about CC during the early universe acceleration (inflation), maybe this is problem can be ignored for the current stage of acceleration as well?

We need a theory to compare with CC!

"Best" models of Inflation so far

$$
S=\int d^{4} x \sqrt{-g}\left(-\left(1+\xi|\mathcal{H}|^{2}\right) R+|\partial \mathcal{H}|^{2}-V(\mathcal{H})\right)
$$

$$
S=\frac{1}{2} \int d^{4} x \sqrt{-g}\left(-R+\frac{R^{2}}{6 M^{2}}\right)
$$

do modify gravity!

What is the most general scalar-tensor theory?

+
+

Jordan - Brans - Dicke

$$
\begin{gathered}
G=\frac{1}{N} \rightarrow \phi \\
S=\int d^{4} x \sqrt{-g}\left(-\phi R+\frac{\omega}{\phi}(\partial \phi)^{2}\right) \\
\text { Scalar-tensor theory }
\end{gathered}
$$

Fighting with ghosts and gradient instabilities

$$
S[\mathcal{R}]=\frac{1}{2} \int d \tau d^{3} \mathbf{x} Z\left(\left(\mathcal{R}^{\prime}\right)^{2}-c_{\mathrm{S}}^{2}\left(\partial_{i} \mathcal{R}\right)^{2}\right) \quad \mathcal{R}=\Phi+H \frac{\delta \varphi}{\dot{\varphi}},
$$

$$
H_{\mathbf{k}}=\frac{\left|P_{\mathbf{k}}\right|^{2}}{2 Z}+\frac{Z c_{S}^{2} k^{2}\left|\mathcal{R}_{\mathbf{k}}\right|^{2}}{2}
$$

$$
R_{\mathbf{k}} \sim \exp \left(\left|c_{s}\right| k \tau\right)
$$

Gredient instability $c_{s}^{2}<0$
ghost $Z(t)<0$
ghosts - modes (oscillators) with the negative mass

What is the most general scalar-tensor theory with one scalar dof on top the graviton, and second order equations of motion?

Horndeski scalar-tensor theory (1974)

$$
X=\frac{1}{2} g^{\mu \nu} \phi_{; \mu} \phi_{; \nu}
$$

k-essence, perfect fluid C_{S}

$$
S=\int d^{4} x \sqrt{-g}[K(X, \phi)+
$$

$$
w=p / \varepsilon<-1
$$

$\left|C_{T}-1\right| \lesssim 10^{-15}$
GW170817+GRB 170817A

$$
+G(X, \phi) \square \phi+
$$

Kinetic Gravity Braiding Imperfect fluid $c_{s}\left(\rho_{\text {ext }}, p_{\text {ext }}\right)$
Deffayet, Pujolas, Sawicki, Vikman (2010)

$$
G_{N}(X, \phi) \quad C_{T}
$$

$$
G_{4}\left(X, \phi, h^{2}+G_{4, X}(X, \phi)\left[\left(\phi_{; \mu}^{; \mu}\right)^{2}-\left(\phi_{; \nu}^{; \mu}\right)^{2}\right]+\right.
$$

$$
\left.+G_{5}(X, \phi) G^{\mu \nu} \phi_{; \mu ; \nu}+\frac{1}{6} G_{5, X}(X, \phi)\left[\left(\phi_{;, \mu}^{\mu}\right)^{3}-3 \phi ; \mu\left(\phi_{T} ; \alpha\right)^{2}+2\left(\phi_{; \nu}^{; \mu}\right)^{3}\right]\right]
$$

$$
C_{T}\left(\rho_{e x t}, p_{e x t}\right)
$$

Kinetic Gravity Braiding is the only survivor of GW170817+GRB 170817A!

$$
S=\int d^{4} x \sqrt{-g}\left(-R+K(\varphi, X)+G(\varphi, X) \square \varphi+\mathscr{L}_{m}(g)\right) \quad X=(\partial \varphi)^{2}
$$

In Kinetic Gravity Braiding the GW's propagate with the speed of light on all backgrounds!

$$
\begin{gathered}
S=\int d^{4} x \sqrt{-g}\left(-f(\varphi) R+K(\varphi, X)+G(\varphi, X) \square \varphi+\mathscr{L}_{m}(g)\right) \\
g_{\mu \nu} \rightarrow f(\varphi)^{-1} g_{\mu \nu}
\end{gathered}
$$

One of the Possible Couplings to Matter

Speed of GW does not change under this field redefinition/ "frame change"!

Good news for you:

There are still

a lot of hard unsolved important problems in cosmology and gravitational physics!
Thanks a lot for attention!

