# Lecture #2 Baryogenesis in the early Universe

#### **Dmitry Gorbunov**

Institute for Nuclear Research of RAS, Moscow

The Helmholtz International School 'Cosmology, Strings, and New Physics"

DIAS-TH Program at BLTP, JINR Dubna, Russia

# Outline



# The only 'direct cosmological evidence' for new particle physics

$$\eta_B = \frac{n_B}{n_\gamma} = 0.6 \times 10^{-9} \,, \quad \frac{n_q - n_{\bar{q}}}{n_q + n_{\bar{a}}} \,, \quad \mu_B$$

must produce adiabatic perturbations  $\delta_B$ 



# Electroweak sphalerons: B-L

$$\begin{split} \partial^{\mu} j_{\mu}{}^{\mathsf{B}} &= 3 \frac{g^2}{16\pi^2} V^{a\;\mu\nu} \, \tilde{V}^{a}_{\;\;\mu\nu} \;, \\ \partial^{\mu} j_{\mu}{}^{\mathsf{L}_{n}} &= \frac{g^2}{16\pi^2} V^{a\;\mu\nu} \, \tilde{V}^{a}_{\;\;\mu\nu} \;, \;\; n = 1, 2, 3 \;, \end{split}$$

 $V^a_{\ \mu\nu}=\partial_\mu V^a_{\ \mu}-\partial_\nu V^a_\mu+g arepsilon^{abc}V^b_\mu V^c_
u$  refer to  $SU(2)_{
m W},\ ilde V^a_{\ \mu\nu}=rac{1}{2}arepsilon_{\mu\nu\lambda\rho} V^{a\ \lambda
ho}$  Anomaly: only left fermions couple to fields  $V^a_\mu$ .

For nontrivial gauge fields in vacuum or plasma

$$\Delta B = B(t_f) - B(t_i) = \int_{t_i}^{t_f} dt \int d^3 \mathbf{x} \, \partial^{\mu} j_{\mu}^{\mathbb{B}} = 3 \int_{t_i}^{t_f} d^4 x \frac{g^2}{16\pi^2} V^{a \; \mu\nu} \, \tilde{V}^{a}_{\; \mu\nu} \; ,$$

Strong fields are needed:  $V^a_{\mu\nu} \propto \frac{1}{g}$ , (integral is natural number!). Energies of such configurations  $\propto \frac{1}{g^2}$ .

$$\Delta B = 3 \Delta L_e = 3 \Delta L_u = 3 \Delta L_\tau$$

At temperatures 100 GeV  $\lesssim T \lesssim 10^{12}$  GeV only 3 linear combinations survive, e.g.

$$B-L$$
,  $L_e-L_\mu$ ,  $L_e-L_\tau$ 

where

$$L \equiv L_0 + L_{II} + L_{\tau}$$

### Baryogenesis

#### Sakharov conditions of successful baryogenesis

B-violation

$$(\Delta B \neq 0) XY \cdots \rightarrow X'Y' \ldots B$$

C- & CP-violation

$$(\Delta C \neq 0, \, \Delta CP \neq 0) \, \bar{X} \, \bar{Y} \cdots \rightarrow \bar{X}' \, \bar{Y}' \dots \bar{B}$$

processes above are out of equilibrium

$$X'Y' \dots B \rightarrow XY \dots$$

At 100 GeV  $\lesssim T \lesssim 10^{12}$  GeV nonperturbative processes (EW-sphalerons) violate B,  $L_{\alpha}$ , so that only three charges are conserved out of four, e.g.

$$B-L$$
,  $L_e-L_u$ ,  $L_e-L_\tau$ 

and 
$$B = \alpha \times (B-L), L = (\alpha-1) \times (B-L)$$

Leptogenesis: Baryogenesis from lepton asymmetry of the Universe ... due to sterile neutrinos

Why  $\Omega_B \sim \Omega_{DM}$  ?

antropic principle?

# Lepton asymmetry from sterile neutrino decays

Most general renormalizable lagrangian with Majorana neutrinos  $N_{l}$ ,  $I. \alpha = 1.2.3.$ 

$$\mathscr{L}_{SM} + \overline{N}_I i \partial N_I - y_{I\alpha} \overline{L}_{\alpha} \widetilde{H} N_I - \frac{M_I}{2} \overline{N}_I^c N_I + \text{h.c.}$$

where  $H_i = \varepsilon_{ij} H_i^*$ , i, j = 1, 2; complex Yukawas, Majorana mass:  $\Delta L \neq 0$ lepton number violating processes ( $N = N^c$ !):

$$N_I o h I_{lpha} \; , \quad N_I o h ar{I}_{lpha} \; , \ h I_{lpha} o h ar{I}_{eta} \; ,$$

- neutrino oscillations are explained
- BAU via leptogenesis (decays for  $M_I > 10^9$  GeV or oscillations for light neutrinos, even  $M_l \ge 100 \,\mathrm{MeV}$
- dark matter with  $M_I \sim 1-100 \, \text{keV}$



# Electroweak transition might help with baryogenesis

#### Sakharov's condition of a successful baryogenesis

- B-violation
- C-, CP-violation
- departure from thermal equilibrium

I order phase transition due to bubble percollation

would happen for  $m_h \lesssim 40 \text{ GeV}$ 

### Phase transitions of the I and II orders



## Baryons are produced on the bubble walls



5

#### Minimal extension with one real scalar

$$\Delta \textit{V} = \frac{1}{2}\mu_{S}^{2}\textit{S}^{2} + \frac{1}{4}\lambda_{S}\textit{S}^{4} \\ + \frac{1}{2}\lambda_{HS}\textit{S}^{2}\textit{H}^{\dagger}\textit{H}$$

- EW phase transition of the strongly I order
- Gravitational waves production by the new phase bubbles

1702.06124



f[Hz]

 $V_{min}(T = 0) < V_{EW}$ 

# Split SUSY: heavy sfermions, light gauginos $M_{ ilde{Q}} \gg M_{\lambda}$

#### Is it possible in SUSY?

N.Arkani-Hamed, S.Dimopoulos (2004)

Yes, moreover, someones argued natural

- In many (simple) models where SUSY is broken spontaneously gauginos are light (massless), that was the problem
- the hierarchy  $M_{\tilde{Q}} \gg M_{\lambda}$  is stable with respect to quantum corrections (RG-evolution)

$$\begin{split} \frac{dM_{\lambda_i}}{d\log Q^2} &\propto \alpha_i M_{\lambda_i} &+ \alpha_i y^2 A \\ \frac{dM_{\tilde{Q}}^2}{d\log Q^2} &\propto y^2 M_{\tilde{Q}}^2 + \dots + \alpha_i M_{\lambda_i}^2 \\ \frac{dA_i}{d\log Q^2} &\propto y^2 A_i + \dots + \alpha_i M_{\lambda_i} \end{split}$$

# Split SUSY: $M_{\tilde{Q}} \gg M_{\lambda}$

- @ 1 TeV: gauginos + higgsinos + SM-like Higgs boson
  - dark matter (natural)
  - gauge coupling unification (feature of Split MSSM)
  - no FCNC (natural)
  - stability of gauge hierarchy (LOST)
    - Though...in MSSM is lost (to some extent) as well: (100 GeV)<sup>2</sup> ≪ (1 TeV)<sup>2</sup>
    - Splitting scale is not very high in fact

out of LHC reach though

# Why NMSSM? Adding 4 d.o.f. to 230...

•  $\mu$ -problem :

$$\mu^{2} \left( H_{U}^{\dagger} H_{U} + H_{D}^{\dagger} H_{D} \right)$$
NMSSM:  $\hat{W} = \hat{N} \hat{H}_{u} \hat{H}_{d}$ 

 $MSSM: \hat{W} = \mu \hat{H}_u \hat{H}_d$ 

NMSSM: W = NR

mechanism of baryogenesis within the Split SUSY:

NMSSM: Electroweak

EWB does not work in MSSM: the Higgs sector mimics SM, no EW phase transition of the I order

MSSM: new sources of CP-violation

NMSSM: + the strongly first order phase transition

Electroweak baryogenesis is attractive: both ingredients can be directly tested

S.Demidov, D.G. (2007)

# Electric dipole moments of electron and neutron

*CP*-source: the same contributions to EDMs as in Split MSSM but here one has generally two additional phases,

$$\begin{split} \phi_1 = & \text{arg}(\tilde{g_u}^* \tilde{g_d}^* M_2 \tilde{\mu}) \,, \quad \phi_2 = & \text{arg}\left(\kappa k^* \lambda_u \lambda_d (\tilde{\mu}^*)^{-2}\right) \,, \quad \phi_3 = & \text{arg}\left(\lambda_u \lambda_d^* \tilde{g}_u^* \tilde{g}_d\right) \\ & \qquad \qquad \tilde{\mu} = \mu + \kappa \left(v_s + i v_P\right) / \sqrt{2} \\ & \qquad \qquad d_f = d_{h\gamma} + d_{WW} + d_{hZ} \end{split}$$







#### Other ideas...

- in equilibrium...

$$\mathscr{L} \propto J_{\mu}^{\mathcal{B}} \partial_{\mu} \left( R, \phi, etc \right) \ 
ightarrow \ \mu_{\mathcal{B}}$$

- Affleck-Dine variants (SUSY?)

$$V = m^2 |\phi|^2 + \lambda |\phi|^4 + \lambda' \phi^4 + \lambda' \phi^{*4}$$

even at inflation

$$(\mu_1 \text{Re}(\phi) + \mu_1 \text{Im}(\phi)) \times F(inflaton)$$

# Observation: why $\rho_B \sim \rho_{DM}$ ?

coincidence

all well-motivated (hence, natural) models (WIMPs, axions, sterile neutrinos) imply this answer

- partly coincidence, because:
  - if  $\rho_{DM} \ll \rho_B$  then DM is unobservable DM can be formed by several specia, only one of which dominates
  - if  $\rho_{DM} \gg \rho_B$  then what ?

(anthropic arguments...?)

May be a hint at common origin of dark matter production and baryon asymmetry generation in the early Universe

## An example: Hylogenesis

H.Davoudiasi, D.Morrissey, K.Sigurdson, S.Tulin (2010)

Greek: hyle (primordial matter) + genesis (origin)

- New fields:
  - 1 Dirac fermion Y
  - 1 complex scalar Φ
  - 2 Dirac fermions  $X_a$ , a = 1,2
- $m_{\Phi} \sim \mathscr{O}(1)\, \mathsf{GeV}$  as  $X_a,\ a=1,2$   $m_2>m_1\gtrsim 1\, \mathsf{TeV}$

Coupling to SM via "neutron portal"

$$-\mathscr{L}_{\text{int}} = rac{\lambda_a}{M^2} \, ar{X}_a d_R ar{u}^C d_R + \zeta_a ar{X}_a Y^C \Phi^* + \text{h.c.}$$

Baryon charge

$$B_{X_a} = -(B_Y + B_{\Phi}) = 1$$

 $m_Y \sim \mathcal{O}(1) \, \text{GeV}$ 

• Proton and DM particles (both Y and Φ) are stable if

$$|m_{Y} - m_{\Phi}| < m_{p} + m_{e} < m_{Y} + m_{\Phi}$$

# Baryogenesis (asymmetry generation)

#### Sakharov's conditions

B-violation (in visible sector!)

 $\lambda_a \neq 0$ 

C- & CP-violation

 $\Im\left(\lambda_1^*\lambda_2\zeta_1\zeta_2^*\right)\neq 0$ 

out-of-equilibrium

decays of nonrelativistic  $X_1$ 



Microscopic asymmetry (assuming  $X_1 \to \bar{Y}\Phi^*$  dominates and  $M_1 \ll M_2$ )

$$\varepsilon = \frac{\Gamma(X_1 \to udd) - \Gamma(\bar{X}_1 \to \bar{u}\bar{d}\bar{d})}{\Gamma(X_1 \to \bar{Y}\Phi^*) + \Gamma(\bar{X}_1 \to Y\Phi)} \approx \frac{m_1^5 \Im[\lambda_1^* \lambda_2 \zeta_1 \zeta_2^*]}{256 \pi^3 |\zeta_1|^2 M^4 m_2} \Rightarrow \varepsilon/g_* \sim \Delta_B = \frac{n_B}{s} \approx 10^{-10}$$

if 
$$m_2 > 2m_1$$
,  $M > 2m_2$  then  $\varepsilon \simeq 2.5 \times 10^{-7} \times \Im[\lambda_1^* \lambda_2 \zeta_1 \zeta_2^*]/|\zeta_1|^2$   
if  $m_2 > 3m_1$ ,  $M > 3m_2$  then  $\varepsilon \simeq 6.5 \times 10^{-9} \times \Im[\lambda_1^* \lambda_2 \zeta_1 \zeta_2^*]/|\zeta_1|^2$ 

seems OK

needs  $|\zeta_1| \ll 1$  ?

# Asymmetric Dark Matter freeze out

#### To make DM natural:

all CP-symmetric pairs (Y and  $\bar{Y}$ ), ( $\Phi$  and  $\Phi^*$ ) must annihilate

- CP-asymmetric relics form Dark Matter is exactly the counterpart of baryon asymmetry in visible sector
- then baryon number conservation implies  $n_Y = n_{\Phi} = n_B$  and so

$$\frac{\Omega_{DM}}{\Omega_B} = \frac{m_Y + m_\Phi}{m_D}$$

stability of proton and DM is kinematically guaranteed for

$$1.7\,\mathrm{GeV} \lesssim m_Y, m_\Phi \lesssim 2.9\,\mathrm{GeV}$$

• hence  $\Omega_{DM} \sim \Omega_B$  is natural

#### Tests?

- Direct production of X<sub>a</sub> at LHC
- Induced proton decay (HyperK, DUNE)