
Optimizing resource
usage with HTCondor

Alexandr Mikula, Petr Vokáč

NEC2019

1st October 2019

P. Vokáč NEC2019, Budva/Becici 2

HTCondor
● Job management system

– different roles
● local batch system for scheduling compute-intensive jobs on cluster
● grid gateway (HTCondor-CE) supporting many local batch system

● High-Throughput Computing (HTC)
– run as much work as possible on all available resources
– large amount of computational power over longer period of time

● huge number of independent jobs or with DAG dependencies
● vs. HPC with tremendous power of single massively parallel jobs

– maximize machine utilization
● don’t leave resources idle
● optimize time-to-finish not time-to-run

● Operator/user requirements and expectation more complex
– fair resource distribution, reasonable time to start job, job execution

priorities, resource allocations without artificial constraints, …

P. Vokáč NEC2019, Budva/Becici 3

HTCondor configuration
● HTCondor provides extremely flexible configuration

– provides tools to enforce local job scheduling policies
– default / simple configuration usually lack some features

● job executed to maximize use of available resources
● missing concept of “queues” known from other batch systems

– flexible configuration has downsides
● no single standard way to achieve requested behavior

– custom attributes (also in submission files, e.g. MaxRuntime, JobFlavor)
– expression language powerful, but can become complex – hard to read

● Clusters shared between groups with different requirements
– jobs with non-standard requirements can wait long (infinite) time

● number of CPUs / GPUs, memory size, disk space, connectivity, …
● small jobs scheduled to fill idle resources not big enough for big one

– cluster providing resources for grid jobs have plenty of small jobs
– special jobs waits till number of small jobs finish at the same time

P. Vokáč NEC2019, Budva/Becici 4

Cluster resource fragmentation
● Most simple case – multicore jobs (request_cpus > 1)

P. Vokáč NEC2019, Budva/Becici 5

Cluster resource fragmentation
● Most simple case – multicore jobs (request_cpus > 1)
● Static jobs slot configuration

– dedicate portion of resources to multicore
– fixed ncore configuration
– doesn’t take into account queued jobs

● can lead to idle resources
● fairshare by static allocation

8 core static slot

1 1111111

4 core 4 core

6 core static slot2 core

...

P. Vokáč NEC2019, Budva/Becici 6

Cluster resource fragmentation
● Most simple case – multicore jobs (request_cpus > 1)
● Static jobs slot configuration

– dedicate portion of resources to multicore
– fixed ncore configuration
– doesn’t take into account queued jobs

● can lead to idle resources
● fairshare by static allocation

8 core static slot

1 1111111

4 core 4 core

6 core static slot2 core

...

P. Vokáč NEC2019, Budva/Becici 7

Cluster resource fragmentation
● Most simple case – multicore jobs (request_cpus > 1)
● Static jobs slot configuration

– dedicate portion of resources to multicore
– fixed ncore configuration
– doesn’t take into account queued jobs

● can lead to idle resources
● fairshare by static allocation

8 core static slot

1 1111111

4 core 4 core

6 core static slot2 core

...

P. Vokáč NEC2019, Budva/Becici 8

Cluster resource fragmentation
● Most simple case – multicore jobs (request_cpus > 1)
● Static jobs slot configuration

– dedicate portion of resources to multicore
– fixed ncore configuration
– doesn’t take into account queued jobs

● can lead to idle resources
● fairshare by static allocation

● Partitionable batch slots
– dynamically allocated resources
– resource fragmentation
– no / minimized idle resources
– small jobs “preferred”

● big jobs delayed (negotiation cycle)
● configured fairshare not followed

8 core static slot

1 1111111

4 core 4 core

6 core static slot2 core

...
1

Jobs
2 core

3 core

1 1

5 core static slot

1
2 core

P. Vokáč NEC2019, Budva/Becici 9

Cluster resource fragmentation
● Most simple case – multicore jobs (request_cpus > 1)
● Static jobs slot configuration

– dedicate portion of resources to multicore
– fixed ncore configuration
– doesn’t take into account queued jobs

● can lead to idle resources
● fairshare by static allocation

● Partitionable batch slots
– dynamically allocated resources
– resource fragmentation
– no / minimized idle resources
– small jobs “preferred”

● big jobs delayed (negotiation cycle)
● configured fairshare not followed

8 core static slot

1 1111111

4 core 4 core

6 core static slot2 core

...
1

Jobs
2 core

8 core pratitionable slot

8 core partitionable slot

3 core

1 1

5 core static slot

1
2 core

Machines

P. Vokáč NEC2019, Budva/Becici 10

Cluster resource fragmentation
● Most simple case – multicore jobs (request_cpus > 1)
● Static jobs slot configuration

– dedicate portion of resources to multicore
– fixed ncore configuration
– doesn’t take into account queued jobs

● can lead to idle resources
● fairshare by static allocation

● Partitionable batch slots
– dynamically allocated resources
– resource fragmentation
– no / minimized idle resources
– small jobs “preferred”

● big jobs delayed (negotiation cycle)
● configured fairshare not followed

8 core static slot

1 1111111

4 core 4 core

6 core static slot2 core

...
1

Jobs
2 core

3 core 2 core

5 core static slot2 core 1

1 1 1

3 core

1 1

5 core static slot

1
2 core

Machines

P. Vokáč NEC2019, Budva/Becici 11

Cluster resource fragmentation
● Most simple case – multicore jobs (request_cpus > 1)
● Static jobs slot configuration

– dedicate portion of resources to multicore
– fixed ncore configuration
– doesn’t take into account queued jobs

● can lead to idle resources
● fairshare by static allocation

● Partitionable batch slots
– dynamically allocated resources
– resource fragmentation
– no / minimized idle resources
– small jobs “preferred”

● big jobs delayed (negotiation cycle)
● configured fairshare not followed

8 core static slot

1 1111111

4 core 4 core

6 core static slot2 core

...
1

Jobs
2 core

3 core 2 core

5 core static slot2 core 1

1 1 1

3 core

1 1

5 core static slot

1
2 core

Machines

3 core2 core

P. Vokáč NEC2019, Budva/Becici 12

Cluster resource fragmentation
● Most simple case – multicore jobs (request_cpus > 1)
● Static jobs slot configuration

– dedicate portion of resources to multicore
– fixed ncore configuration
– doesn’t take into account queued jobs

● can lead to idle resources
● fairshare by static allocation

● Partitionable batch slots
– dynamically allocated resources
– resource fragmentation
– no / minimized idle resources
– small jobs “preferred”

● big jobs delayed (negotiation cycle)
● configured fairshare not followed

8 core static slot

1 1111111

4 core 4 core

6 core static slot2 core

...
1

Jobs
2 core

3 core 2 core

5 core static slot2 core 1

1 1 1

3 core

1 1

5 core static slot

1
2 core

Machines

3 core2 core

1

1

1
1

P. Vokáč NEC2019, Budva/Becici 13

Cluster resource fragmentation
● Most simple case – multicore jobs (request_cpus > 1)
● Static jobs slot configuration

– dedicate portion of resources to multicore
– fixed ncore configuration
– doesn’t take into account queued jobs

● can lead to idle resources
● fairshare by static allocation

● Partitionable batch slots
– dynamically allocated resources
– resource fragmentation
– no / minimized idle resources
– small jobs “preferred”

● big jobs delayed (negotiation cycle)
● configured fairshare not followed

8 core static slot

1 1111111

4 core 4 core

6 core static slot2 core

...
1

Jobs
2 core

3 core 2 core

5 core static slot2 core 1

1 1 1

3 core

1 1

5 core static slot

1
2 core

Machines

3 core2 core

1

1

1
1

P. Vokáč NEC2019, Budva/Becici 14

Cluster resource fragmentation
● Most simple case – multicore jobs (request_cpus > 1)
● Static jobs slot configuration

– dedicate portion of resources to multicore
– fixed ncore configuration
– doesn’t take into account queued jobs

● can lead to idle resources
● fairshare by static allocation

● Partitionable batch slots
– dynamically allocated resources
– resource fragmentation
– no / minimized idle resources
– small jobs “preferred”

● big jobs delayed (negotiation cycle)
● configured fairshare not followed

8 core static slot

1 1111111

4 core 4 core

6 core static slot2 core

...
1

Jobs
2 core

3 core 2 core

5 core static slot2 core 1

1 1 1

3 core

1 1

5 core static slot

1
2 core

Machines

3 core2 core

1

1

1
1

P. Vokáč NEC2019, Budva/Becici 15

Cluster resource fragmentation
● Most simple case – multicore jobs (request_cpus > 1)
● Static jobs slot configuration

– dedicate portion of resources to multicore
– fixed ncore configuration
– doesn’t take into account queued jobs

● can lead to idle resources
● fairshare by static allocation

● Partitionable batch slots
– dynamically allocated resources
– resource fragmentation
– no / minimized idle resources
– small jobs “preferred”

● big jobs delayed (negotiation cycle)
● configured fairshare not followed

8 core static slot

1 1111111

4 core 4 core

6 core static slot2 core

...
1

Jobs
2 core

3 core 2 core

5 core static slot2 core 1

1 1 1

3 core

1 1

5 core static slot

1
2 core

Machines

3 core2 core

1

1

1
1

P. Vokáč NEC2019, Budva/Becici 16

Cluster defragmentation
● Peemptible jobs

– jobs with lower priority killed by batch system
● wasted CPU unless job continuously store results (ES, multi-payload)
● rescheduled to run later once jobs with higher priority completes

– more jobs can be preempted from machine at same time
● higher chance (not guaranteed) for bigger slot for higher priority jobs

– usually not applicable for all jobs

P. Vokáč NEC2019, Budva/Becici 17

Cluster defragmentation
● Peemptible jobs

– jobs with lower priority killed by batch system
● wasted CPU unless job continuously store results (ES, multi-payload)
● rescheduled to run later once jobs with higher priority completes

– more jobs can be preempted from machine at same time
● higher chance (not guaranteed) for bigger slot for higher priority jobs

– usually not applicable for all jobs
● Defrag daemon

– HTCondor built-in solution for cluster resource defragmentation
– select machine passing DEFRAG_REQUIREMENTS (by rank expr.)

● change machine state to drain (condor_status) – no new jobs
● wait till DEFRAG_WHOLE_MACHINE_EXPR pass
● limit number of machines in draining state, max draining per hour, …

– idle resources waiting for defragmentation
● no connection to queued job requirements

P. Vokáč NEC2019, Budva/Becici 18

HTCondor defrag
● Doesn’t guarantee drained big slot matched with big job

– additional configuration necessary not to match with small jobs
● GROUP_SORT_EXPR – prefer matching multicore jobs first

– HEP-puppet configuration
– works quite reliable, but only for one group having multicore jobs
– one starving muticore fairshare → prevents others to start mcore jobs

● prevent small jobs to match big slot for few negotiation cycles
● Slow defragmenation vs. number of idle / draining machines
● Not optimal for arbitrary user resource requirements

P. Vokáč NEC2019, Budva/Becici 19

Optimize resource utilization
● CPU not the only shared resource

– GPU, memory
– disk size, disk I/O, network
– shared storage

● Draining – multidimensional optimization
– resource requirements of queued jobs
– monitor condor events for quick adaptation
– node selection for fastest draining (MaxRuntime, preemption, …)
– don’t limit users to semi-static resource partition (8 cores / 16GB RAM)
– more intelligent job placement – group short jobs together

● Concurrency limits
– could be used to protect (global) shared resource

from overloading by running jobs (I/O, storage, network)
– defaults values can be injected by JOB_TRANSFORM

CPUs

M
em

or
y

job

job

job

Machine

P. Vokáč NEC2019, Budva/Becici 20

Conclusion
● HTCondor provides means to define flexible job scheduling policies
● Default configuration doesn’t satisfy even simple requirements
● Optimal resource utilization is not an easy task

– idle resources vs. time-to-start
● important mainly for local users

– prevent artificial resource limits
– dynamic configuration updates necessary

● HTCondor expression language not optimal for complex policies
● Accounting

	Slide
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

