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HTCondor
● Job management system

– different roles
● local batch system for scheduling compute-intensive jobs on cluster
● grid gateway (HTCondor-CE) supporting many local batch system

● High-Throughput Computing (HTC)
– run as much work as possible on all available resources
– large amount of computational power over longer period of time

● huge number of independent jobs or with DAG dependencies
● vs. HPC with tremendous power of single massively parallel jobs

– maximize machine utilization
● don’t leave resources idle
● optimize time-to-finish not time-to-run

● Operator/user requirements and expectation more complex
– fair resource distribution, reasonable time to start job, job execution 

priorities, resource allocations without artificial constraints, …
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HTCondor configuration
● HTCondor provides extremely flexible configuration

– provides tools to enforce local job scheduling policies
– default / simple configuration usually lack some features

● job executed to maximize use of available resources
● missing concept of “queues” known from other batch systems

– flexible configuration has downsides
● no single standard way to achieve requested behavior

– custom attributes (also in submission files, e.g. MaxRuntime, JobFlavor)
– expression language powerful, but can become complex – hard to read

● Clusters shared between groups with different requirements
– jobs with non-standard requirements can wait long (infinite) time

● number of CPUs / GPUs, memory size, disk space, connectivity, …
● small jobs scheduled to fill idle resources not big enough for big one

– cluster providing resources for grid jobs have plenty of small jobs
– special jobs waits till number of small jobs finish at the same time
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Cluster resource fragmentation
● Most simple case – multicore jobs (request_cpus > 1)



P. Vokáč NEC2019, Budva/Becici 5

Cluster resource fragmentation
● Most simple case – multicore jobs (request_cpus > 1)
● Static jobs slot configuration

– dedicate portion of resources to multicore
– fixed ncore configuration
– doesn’t take into account queued jobs

● can lead to idle resources
● fairshare by static allocation
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● Static jobs slot configuration

– dedicate portion of resources to multicore
– fixed ncore configuration
– doesn’t take into account queued jobs

● can lead to idle resources
● fairshare by static allocation

● Partitionable batch slots
– dynamically allocated resources
– resource fragmentation
– no / minimized idle resources
– small jobs “preferred”

● big jobs delayed (negotiation cycle)
● configured fairshare not followed
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Cluster defragmentation
● Peemptible jobs

– jobs with lower priority killed by batch system
● wasted CPU unless job continuously store results (ES, multi-payload)
● rescheduled to run later once jobs with higher priority completes

– more jobs can be preempted from machine at same time
● higher chance (not guaranteed) for bigger slot for higher priority jobs

– usually not applicable for all jobs
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Cluster defragmentation
● Peemptible jobs

– jobs with lower priority killed by batch system
● wasted CPU unless job continuously store results (ES, multi-payload)
● rescheduled to run later once jobs with higher priority completes

– more jobs can be preempted from machine at same time
● higher chance (not guaranteed) for bigger slot for higher priority jobs

– usually not applicable for all jobs
● Defrag daemon

– HTCondor built-in solution for cluster resource defragmentation
– select machine passing DEFRAG_REQUIREMENTS (by rank expr.)

● change machine state to drain (condor_status) – no new jobs
● wait till DEFRAG_WHOLE_MACHINE_EXPR pass
● limit number of machines in draining state, max draining per hour, …

– idle resources waiting for defragmentation
● no connection to queued job requirements
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HTCondor defrag
● Doesn’t guarantee drained big slot matched with big job

– additional configuration necessary not to match with small jobs
● GROUP_SORT_EXPR – prefer matching multicore jobs first

– HEP-puppet configuration
– works quite reliable, but only for one group having multicore jobs
– one starving muticore fairshare → prevents others to start mcore jobs

● prevent small jobs to match big slot for few negotiation cycles
● Slow defragmenation vs. number of idle / draining machines
● Not optimal for arbitrary user resource requirements
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Optimize resource utilization
● CPU not the only shared resource

– GPU, memory
– disk size, disk I/O, network
– shared storage

● Draining – multidimensional optimization
– resource requirements of queued jobs
– monitor condor events for quick adaptation
– node selection for fastest draining (MaxRuntime, preemption, …)
– don’t limit users to semi-static resource partition (8 cores / 16GB RAM)
– more intelligent job placement – group short jobs together

● Concurrency limits
– could be used to protect (global) shared resource

from overloading by running jobs (I/O, storage, network)
– defaults values can be injected by JOB_TRANSFORM
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Conclusion
● HTCondor provides means to define flexible job scheduling policies
● Default configuration doesn’t satisfy even simple requirements
● Optimal resource utilization is not an easy task

– idle resources vs. time-to-start
● important mainly for local users

– prevent artificial resource limits
– dynamic configuration updates necessary

● HTCondor expression language not optimal for complex policies
● Accounting
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