GNA:

Global Neutrino Analysis framework and GPU based
computations

A. Fatkina M. Gonchar D. Naumov K. Treskov
L. Kolupaeva A. Kalitkina

JINR DLNP

NEC 2019

1/16

Introduction

GNA (Global Neutrino Analysis) — flexible, extensible framework
for the statistical data analysis; cuGNA is a GPU support library

for GNA framework.

GNA goals

» Comprehensive models with
a large number of
parameters.

» Data analysis for JUNO and
Daya Bay experiments.

» Global analysis of neutrino
data (experiments: Daya
Bay, JUNO, NOvA, T2K,
etc).

cuGNA goals

>
>

Accelerate computations.

Use a full power of target
machine.

Do it smoothly and hide
data management details
from the end user.

Keep GNA performance
features for CPU
computations.

2/16

GNA overview

The idea of GNA
» Dataflow paradigm. » Physical and programming

. issues are separated.
» Computations are P

represented by the graph,
where nodes are
transformations.

» Computations on demand in
lazy manner.

3/16

GNA Structure

» Comprehensive command line chain.
ul » Computational graphs.
> Statistical analysis.
» Read configuration.
» Variables.
Bundles e . i Python
mall computational graph. (flexibility)
C++
; ot efficienc
ransformation » Linear algebra > Statistics (y)
» Integration » Physics
» Data » GPU transformation
Core » Variable » Host-Device data
» Transformation management

4/16

Computations

Number of parameters

» Daya Bay — 15 free
parameters and 400 at all,

» JUNO antineutrino spectra
— 5 free parameters and
100-1200 parameters in
general (depands on task) .

Variables in namespace 'acc_norm':

AD11 = 1
AD21 = 1
Variables in namespace 'bkg_rate_acc':
AD11 = 8.4636
AD21 = 6.29076
Variables in namespace 'efflivetime'
AD11 =7.73792e+07
AD21 = 8.0053e+07
Variables in namespace 'acc_num_bf'
AD11 =6.54907e+08
ADZ21 =5.03594e+08

Expected execution time

>

Seconds for a single model
evaluation,

Minutes or hours for
multidimensional fit,

Days or months for MC
based methods.

1+ .01 [1%]
1+ 0.01 [1%]
[fixed]
[fixed]

5/16

Computational graph example
JUNO model

Graph: 481 nodes, 969 edges

6/16

Computational graph example

JUNO model

Entries/MeV

JUNO prediction (NH)

No effects

+ LSNL

+ energy resolution
+ final binning

E.is, MeV

7/16

General features

Performance on any target machine

Lazy evaluation

» Subgraphs are to be
computed after try to read
its output. Only dependent
subgraph is computed.

_—
75| Output ,No
emply. read
. Compute i} , Compute
emoly and read emoly and read

Caching

» If transformation was
already computed for given
input data there is no need
to recompute it one more
time.

- [
—
- - Read
M—
o Compute
emply

and read

8/16

What is cuGNA about?

» Lazy data transfer apu. 9

tools.
» Unified data CPU: *
containers.

D2H
» An effortless switch
between GPU and

CPU computations. H2D
» A set of predefined - IR
GPU-based . .

transformations. CPU: a L»read »

» General GNA style
API.

D2H D2H

9/16

Why GPU?

» Most of GNA
transformations

operate on all al12 .. aiN
arrays/matrices.

[
»

Block size X |
|

A

a21 a22 .. a2N
» For most

transformations
almost no data
dependency within a
single transformation.

Block size Y

aM1 aM2 .. aMN

» Single memory
allocation — multiple
calls.

10/16

When you should not use it?

Host Transfer Device

» Small size of input To T
data arrays.

» Many data transfers Ts T,
are expected.)

» Many data
dependencies within a

single transformation. {
: e -
» Computationally easy i e
tasks (addition,
assignment, etc). T Tia

11/16

When it's definitely worth it?

Some simple rules

GPU architecture specific
points
» More input data size.

» Less data dependecies.

GNA specific points

» Port continuous subgraphs.

» Operations on big arrays or
matrices.

I GPU transformation or H2D/D2H.
[Recomputable CPU transformations.
I Static CPU transformations.

Much better

12/16

Examples
Oscillation probability

oscrob
(001 |

Functions to be compuited
on GPU
Green arrow — D2D transfer
(low costs)

Survival probability

0 200 400 600 800 1000
E., Mev

Expanding edge — H2D transfer
(costly)
Tapering edge — D2H tranfer

(costly)

13/16

Examples

Oscillation probability s "

Ams L AmsL
Pra — vg) = Sap — 4 X5 Re(V3;VaiVa Vi) sin® gt +2575 5 Im(V3;VsiVay Vi) sin gt

CPU and GPU
100 4 Device:
—— CPU ’
-@- CPU (float)
—&— GPU
1071 § -5~ GPU (float)
»
g‘ ©
3 1072
x
[
g
[
Q
GE) 1073 4
E
1074 4
T T T T T T T
10° 10t 102 103 104 108 108 107

Input size

GPU: GeForce GTX 950M, CPU: Intel Core i7-7500U

14/16

Conclusion

GNA framework GPU computations in GNA
» Flexible framework for data » An effortless GPU support
analysis of neutrino for statistical data analysis
experiments. tasks.
» May be extended by » Common GNA style API.

user-defined
transformations.

» Acceleration on real size

GNA tasks in tens times.
» Implemented Daya Bay and

JUNO models.

15/16

GNA:

Global Neutrino Analysis framework and GPU based
computations

A. Fatkina M. Gonchar D. Naumov K. Treskov
L. Kolupaeva A. Kalitkina

JINR DLNP

NEC 2019

http://gna.pages.jinr.ru/gna/

16/16

	Introduction
	GNA structure

