Simulating Lattice Quantum Chromodynamics on the Govorun Supercomputer

A.Yu. Kotov

XXVII International Symposium on Nuclear Electronics & Computing NEC'2019

30 Sept - 4 Oct, 2019

Our group

- N.Yu. Astrakhantsev
- V.V. Braguta
- A.Yu. Kotov
- A.A. Nikolaev

Outline

- 1. Quantum Chromodynamics and Lattice
- 2. Lattice QCD and Govorun
- 3. Physical applications
- 4. Conclusions

- Degrees of freedom
 - Quarks
 - Gluons

- Degrees of freedom
 - Quarks
 - Gluons

- Can be studied analytically only within (uncontrolled) approximations!
- Confinement: The Millennium Problem!

- Degrees of freedom
 - Quarks
 - Gluons

- Can be studied analytically only within (uncontrolled) approximations!
- Confinement: The Millennium Problem!
- But seen in Lattice simulations:

- Degrees of freedom
 - Quarks
 - Gluons

- Can be studied analytically only within (uncontrolled) approximations!
- Confinement: The Millennium Problem!
- But seen in Lattice simulations:

Lattice QCD allows to study QCD from the first principles!

Building Lattice QCD

Path integral:

$$Z = \int DU_{x,\mu} \ Dar{q}_x \ Dq_x \ \exp\left(-S[U,ar{q},q]
ight)$$

Building Lattice QCD

Path integral:

$$Z = \int DU_{x,\mu} \ Dar{q}_x \ Dq_x \ \exp\left(-S[U,ar{q},q]
ight)$$

Typical sizes:

• Number of variables U: $40^4 \times 4 \times 8 \sim 10^8$

▶ Number of variables q, \bar{q} : $40^4 \times 4 \times 3 \sim 3 \cdot 10^7$ Large number of variables \Rightarrow Monte Carlo integration

Building Lattice QCD

Path integral:

$$Z = \int DU_{x,\mu} \ Dar{q}_x \ Dq_x \ \exp\left(-S[U,ar{q},q]
ight)$$

Typical sizes:

• Number of variables U: $40^4 \times 4 \times 8 \sim 10^8$

▶ Number of variables q, \bar{q} : $40^4 \times 4 \times 3 \sim 3 \cdot 10^7$ Large number of variables ⇒ Monte Carlo integration Can be efficiently parallelized on GPU!

Govorun DGX high-performance nodes

The DGX-1 nodes open wide opportunities for multiGPU

Single GPU problems:

- GPU Memory limitation
- Large wall time

MultiGPU strategy (1D splitting)

Lattice size $L_s^3 \times L_t$ (often $L_s > L_t$) and N GPUs:

- 1. *N* slices of the size $(L_s/N) \times L_s^2 \times L_t$;
- 2. Data on the edge halos (1 layer), the other - bulk $(L_s/N - 2$ layers);
- 3. Need neighbors from both sides: enlarge $L_s/N \rightarrow L_s/N + 2$ (creates overhead)
- Need to transfer halos of neighbors (huge overhead);

Idea: we need to *overlap* computation of bulk with the transfer of halos.

Transfer-computation overlap

DGX-1 fast P2P transfer: *completely overlap transfer with computation*.

MultiGPU performance

Lattice size $64^3 \times 16$ (commonly used), strong scaling analysis

- DGX-1 and blade: good scaling up to 4 GPUs
- DGX-1: well even at 8 GPUs (1 node)
- Blade: worse on 8 GPUs (2 nodes) due to inter-node communication

MultiGPU performance

Lattice size $64^3 \times 16$ (commonly used), strong scaling analysis

- DGX-1 and blade: good scaling up to 4 GPUs
- DGX-1: well even at 8 GPUs (1 node)
- Blade: worse on 8 GPUs (2 nodes) due to inter-node communication

Scaling is (almost) perfect up to 8 GPUs!

QCD and QCD-like theories in various extreme conditions:

- ► Temperature *T*
- Baryon density ρ_B
- Isospin density ρ_I
- Chiral density ρ₅
- Magnetic field eB

Selected results

QCD phase diagram in T, μ plane

[arXiv:1909.09547]

Selected results

QCD phase diagram in B, T, μ space

[arXiv:1909.09547]

Conclusion

- QCD properties are nontrivial, interesting and important
- QCD is very complicated and can be studied reliably only within lattice simulation
- Lattice simulations are very demanding and require modern supercomputers and efficient algorithms
- Govorun Supercomputer gives possibility to conduct world level lattice simulations important for NICA experiment