Simulating Lattice Quantum Chromodynamics on the Govorun Supercomputer

A.Yu. Kotov

Bogoliubov Laboratory of Theoretical Physics

XXVII International Symposium on Nuclear Electronics \& Computing NEC'2019

$$
30 \text { Sept - } 4 \text { Oct, } 2019
$$

Our group

- N.Yu. Astrakhantsev
- V.V. Braguta
- A.Yu. Kotov
- A.A. Nikolaev

Outline

1. Quantum Chromodynamics and Lattice
2. Lattice QCD and Govorun
3. Physical applications
4. Conclusions

Theory of strong interactions (QCD)

- Degrees of freedom
- Quarks
- Gluons

Theory of strong interactions (QCD)

- Degrees of freedom
- Quarks
- Gluons

- Can be studied analytically only within (uncontrolled) approximations!
- Confinement: The Millennium Problem!

Theory of strong interactions (QCD)

proton

- Degrees of freedom
- Quarks
- Gluons
- Can be studied analytically only within (uncontrolled) approximations!
- Confinement: The Millennium Problem!
- But seen in Lattice simulations:

Theory of strong interactions (QCD)

- Degrees of freedom
- Quarks
- Gluons

- Can be studied analytically only within (uncontrolled) approximations!
- Confinement: The Millennium Problem!
- But seen in Lattice simulations:

> Lattice QCD allows to study QCD from the first principles!

Building Lattice QCD

Path integral:

$$
Z=\int D U_{x, \mu} D \bar{q}_{x} D q_{x} \exp (-S[U, \bar{q}, q])
$$

Building Lattice QCD

Path integral:

$$
Z=\int D U_{x, \mu} D \bar{q}_{x} D q_{x} \exp (-S[U, \bar{q}, q])
$$

Typical sizes:

- Number of variables U : $40^{4} \times 4 \times 8 \sim 10^{8}$
- Number of variables $q, \bar{q}: 40^{4} \times 4 \times 3 \sim 3 \cdot 10^{7}$

Large number of variables \Rightarrow Monte Carlo integration

Building Lattice QCD

Path integral:

$$
Z=\int D U_{x, \mu} D \bar{q}_{x} D q_{x} \exp (-S[U, \bar{q}, q])
$$

Typical sizes:

- Number of variables U : $40^{4} \times 4 \times 8 \sim 10^{8}$
- Number of variables q, \bar{q} : $40^{4} \times 4 \times 3 \sim 3 \cdot 10^{7}$

Large number of variables \Rightarrow Monte Carlo integration
Can be efficiently parallelized on GPU!

Govorun DGX high-performance nodes

The DGX-1 nodes open wide opportunities for multiGPU
Single GPU problems:

- GPU Memory limitation
- Large wall time

MultiGPU strategy (1D splitting)

Lattice size $L_{s}^{3} \times L_{t}$ (often $L_{s}>L_{t}$) and N GPUs:

1. N slices of the size $\left(L_{s} / N\right) \times L_{s}^{2} \times L_{t}$;
2. Data on the edge - halos (1 layer), the other - bulk ($L_{s} / N-2$ layers);
3. Need neighbors from both sides: enlarge $L_{s} / N \rightarrow L_{s} / N+2$ (creates overhead)
4. Need to transfer halos of neighbors (huge overhead);
Idea: we need to overlap computation of bulk with the transfer of halos.

Transfer-computation overlap

DGX-1 fast P2P transfer: completely overlap transfer with computation.

MultiGPU performance

Lattice size $64^{3} \times 16$ (commonly used), strong scaling analysis

- DGX-1 and blade: good scaling up to 4 GPUs
- DGX-1: well even at 8 GPUs (1 node)
- Blade: worse on 8 GPUs (2 nodes) due to inter-node communication

MultiGPU performance

Lattice size $64^{3} \times 16$ (commonly used), strong scaling analysis

- DGX-1 and blade: good scaling up to 4 GPUs
- DGX-1: well even at 8 GPUs (1 node)
- Blade: worse on 8 GPUs (2 nodes) due to inter-node communication

Scaling is (almost) perfect up to 8 GPUs!

Physical results

QCD and QCD-like theories in various extreme conditions:

- Temperature T
- Baryon density ρ_{B}
- Isospin density ρ_{I}
- Chiral density ρ_{5}
- Magnetic field $e B$

Selected results

QCD phase diagram in T, μ plane

CEP estimation: $\left(T^{\text {CEP }}, \mu_{B}^{\text {CEP }}\right) \sim(100,800) \mathrm{MeV}$

> [arXiv:1909.09547]

Selected results

QCD phase diagram in B, T, μ space

[arXiv:1909.09547]

Conclusion

- QCD properties are nontrivial, interesting and important
- QCD is very complicated and can be studied reliably only within lattice simulation
- Lattice simulations are very demanding and require modern supercomputers and efficient algorithms
- Govorun Supercomputer gives possibility to conduct world level lattice simulations important for NICA experiment

