The ATLAS Electron and Photon Trigger Performance in Run 2

D. A. Maximov on behalf of the ATLAS collaboration The 27th International Symposium Nuclear Electronics and Computing (NEC'2019)

> BINP SB RAS, Novosibirsk, Russia NSU, Novosibirsk, Russia

> > 3 October 2019

D. A. Maximov (BINP, NSU)

ATLAS EGamma Trigger Run 2

3.10.2019 1 / 11

The ATLAS detector scheme

All plots and results shown are from "Performance of electron and photon triggers in ATLAS during LHC Run 2"

paper, CERN-EP-2019-169

D. A. IVIAXIMOV (BINP, NOU

ATLAS EGamma Trigger Run 2

3.10.2019 2 / 11

The ATLAS trigger system

L1 Trigger

2×2 trigger tower cluster as Rol in EM calo

- V: varying E_T threshold within -2 and +3 GeV of nominal threshold
- H: E_T dependent veto on hadronic leakage
 - I: E_T dependent isolation of cluster in EM calorimeter

Trigger reconstruction of photons and electrons

ATL-DAQ-SLIDE-2019-628

ヨト イヨト

Image: Image:

Ringer algorithm

- used from 2017 on to trigger electrons (Fast Calorimeter step) with $E_T > 15 GeV$
- uses lateral shower development
- calculates concentric ring energy sums in each calorimeter layer
- normalized ring energies fed into multilayer perceptron neutral networks
- event selection efficiency kept at the same level

• 50% CPU reduction for the lowest p_T unprescaled single electron trigger

3.10.2019 5 / 11

Photon trigger evolution and performance

Single photon trigger had a threshold of 120 GeV (2015) and 140 GeV (2016-2018), more details in the backup

- bootstrap method used to calculate the efficiency
- total uncertainties dominated by systematics, in total O(1%) for E_T 5 GeV above threshold

Performance evolution of single electron trigger

- efficiency is calculated wrt offline tight and isolated electrons, measured with "Z tag and probe" method
- sharper turn on in 2015 lower E_T threshold, no isolation at L1, looser identification
- inefficiencies in 2016 below 60 GeV observed due to likelihood calorimeter only selection in precision calorimeter step
- 2017 data driven likelihood selection, introduction of Ringer algorithm

Heavy ion collisions

- Events have a busy environment
- Event is charaterised collision centrality, accounted by $FCal \sum E_T$, affects trigger efficiency
- Introduced underlying event (UE) subtraction into egamma trigger to minimize efficiency depedence on centrality, allows to use standard identification variables

Photon trigger in heavy ion data taking

- photon trigger efficiency evaluated with respect to offline-reconstructed photons measured by bootstrap method
- efficiency shown with and without subtraction of the underlying event

Conclusions

- Electron and photon trigger performed well during Run-2
- Significant complication of experimental environment from 2015 to 2018 requires trigger chains modification and development/adoption of new algorithms (Ringer)
- Using of adopted offline reconstruction algorithms (GSF, Superclusters) for future data-taking is expected to improve energy and momentum resolution at trigger stage

References

- "Performance of electron and photon triggers in ATLAS during LHC Run 2", The ATLAS Collaboration, CERN-EP-2019-169, arXiv:1909.00761, https://arxiv.org/pdf/1909.00761, Submitted to: EPJC
- The ATLAS Electron and Photon Trigger Performance in Run-2 for ICNFP 2019" ATL-DAQ-SLIDE-2019-628, https://cds.cern.ch/record/2688727

Backup

3.10.2019 1 / 16

・ロト (個) (目) (目) (目) (日)

High Level Trigger sequence

D. A. Maximov (BINP, NSU)

ATLAS EGamma Trigger Run 2

3.10.2019 2 / 16

'Offline' Electron and photon reconstruction and identification

Electrons

- Identification based on a likelihood discriminator
- 'loose', 'medium' and 'tight' working points considered
- using GSF (Gaussian-Sum Filter) as a generalisation of the Kalman fitter, better account for energy loss in Inner Detector

Using Supercluster to improve electron and photon energy reconstruction in cases with Bremsstrahlung or pair production

Photons

- identification based on calorimetric variables
- two identification working points: 'loose' and 'tight'
- 'loose': second EM layer + Hadronic calorimeters
- 'tight': 'loose' + first EM calo layer

Performance measurement techniques — electrons

Z tag-and-probe method

$$\epsilon_{total} = \epsilon_{offline} \times \epsilon_{trig} = \left(\frac{N_{offline}}{N_{all}}\right) \times \left(\frac{N_{trig}}{N_{offline}}\right)$$

- N_{all} number of produced electrons,
- *N_{trig}* number of triggered electron candidates,
- N_{offline} number of isolated, identified and reconstructed offline electron candidates
- $\epsilon_{offline}$ offline efficiency

Trigger efficiency computed with respect to offline electron definitions

Performance measurement techniques — photons

Bootstrap method

 $\epsilon_{trig}^{\gamma} = \epsilon_{HLT|BS} \times \epsilon_{BS}$

• $\epsilon_{\textit{trig}}^{\gamma} - \text{HLT}$ efficiency with respect to offline selection

- $\epsilon_{HLT|BS}$ HLT efficiency on bootstrap sample bootstrap sample collected by L1-only triggers or by loose, low- E_T photon triggers.
- ϵ_{BS} Bootstrap sample efficiency with respect to offline selection computed on events selected by special 'random' trigger

Performance measurement techniques — photons

Z radiative decay method used for diphoton triggers

ATLAS EGamma Trigger Run 2

3.10.2019 6 / 16

2000

Photon trigger efficiency

3.10.2019 7 / 16

Level-1 trigger performance

3.10.2019 8 / 16

고는

ATLAS EGamma Trigger Run 2

Photon trigger evolution and performance

Trigger type	2015	2016	2017-2018
Single photon	g120_loose (EM22VHI)		g140_loose (EM22VHI)
Primary diphoton	g35_loose_g25_loose (2EM15VH)		g35_medium_g25_medium (2EM20VH)
Loose diphoton			$2g50_loose$ ($2EM20VH$)
Tight diphoton	2g20_tight (2EM15VH)	2g22_tight (2EM15VH)	2g20_tight_icalovloose (2EM15VHI)

D. A. Maximov (BINP, NSU)

ATLAS EGamma Trigger Run 2

Photon trigger evolution and performance

- bootstrap method used to calculate the efficiency
- total uncertainties dominated by systematics, in total O(1%) for E_T 5 GeV above threshold

3.10.2019 10 / 16

DiPhoton trigger evolution and performance

D. A. Maximov (BINP, NSU)

ATLAS EGamma Trigger Run 2

3.10.2019 11 / 16

Electron trigger evolution and performance

Trigger type	2015	2016	2017-2018
Single electron	e24_lhmedium (EM20VH) e120_lhloose e200_etcut	e26_lhtight_nod0_ivan e60_lhmedium_nod0 e140_lhloose_nod0 e300_etcut	cloose (EM22VHI)
Dielectron	2e12_lhloose (2EM10VH)	2e17_lhvloose_nod0 (2EM15VH)	2e17_lhvloose_nod0 (2EM15VHI) 2e24_lhvloose_nod0 (2EM20VH)

□ ▶ < @ ▶ < E ▶ < E ▶ 된 = 900</p>

Performance evolution of single electron trigger

ATLAS EGamma Trigger Run 2

3.10.2019 13 / 16

ELE NOR

Single Electron trigger evolution and performance

DiElectron trigger evolution and performance

3.10.2019 15 / 16

Electron trigger in heavy ion data taking

3.10.2019 16 / 16

三日 のへの

A B A A B A

ATLAS EGamma Trigger Run 2

D. A. Maximov (BINP, NSU)