

BM@N experiment for studies of baryonic matter at the Nuclotron

A.Maksymchuk on behalf of the BM@N Collaboration

Complex NICA

BM@N: heavy ion energy 1 - 4.5 GeV/n, beams: p to Au, Intensity ~few 10^6 /s (Au)

Physics possibilities at the Nuclotron

Heavy ion collisions experiments

BM@N scientific program comprises studies of nuclear matter in intermediate range between SIS-18 and NICA/FAIR

Physics possibilities at the Nuclotron

In A+A collisions: Opening thresholds for strange and multistrange hyperon production

In heavy-ion reactions: production of hypernuclei through coalescence of Λ with light fragments enhanced at high baryon densities

Maximal yield predicted for \sqrt{s} =4-5A GeV

BM@N run with Ar and Kr beams in March 2018

- Central tracker inside analyzing magnet \rightarrow 6 GEM detectors 163 x 45 cm2 and 3 forward Si strip detectors for tracking

- Full ToF-400, ToF-700, T0 + Trigger barrel and Si detectors, full ZDC, part of ECAL, CSC and DCH chambers as outer tracker

Program: Measure inelastic reactions Ar (Kr) + target \rightarrow X on targets Al, Cu, Sn, Pb

- \rightarrow Hyperon production measured in central tracker (Si + GEM)
- \rightarrow Charged particles and nuclear fragments identified with ToF-400,700
- \rightarrow Gamma and multi-gamma states identified in ECAL
- \rightarrow 130 M events in Ar beam, 50 M events in Kr beam

Λ hyperon signals in 4 A GeV Carbonnucleus interactions

Beam parameters and setup at different stages of BM@N experiment

Year	2016	2017 spring	2018 spring	2021	2022 and later
Beam	d(↑)	С	Ar,Kr, C(SRC)	Kr,Xe	up to Au
Max.inten sity, Hz	0.5M	0.5M	0.5M	0.5M	2-5M
Trigger rate, Hz	5k	5k	10k	10k	20k→50k
Central tracker status	6 GEM half planes	6 GEM half planes	6 GEM half planes + 3 forward Si planes	7 GEM full planes + forward Si planes	7 GEM full planes + forward Si + large STS planes
Experiment al status	technical run	technical run	technical run+physics	stage1 physics	stage2 physics

BM@N Experimental Setup

Full detector configuration for heavy ion program

Beam pipe before the target, target station

Target station:

Three different target types with d = 30mm and 1 empty target are foreseen for data taking and background evaluation;

Operational in vacuum and magnetic field.

Forward Si tracking detectors performance at Ar and Kr beams (March 2018)

• Vertex plane-2 consists of 2 modules with sensitivity area $12,5 \times 12,5$ cm², 2560 strips

Si-3 detector residual vs GEM+Si track ~ 86 µm

Upgrade of the forward Si tracking detectors

Three sizes of Si-planes

Design of the Si-planes on the BM@N beam-channel

Station#	Number of	DSSD station	Number of	
	DSSD modules	square	Readout	
			channels	
Station1	10	720 cm ²	12800	
Station2	14	1008 cm ²	17920	
Station3	18	1296 cm ²	23040	
Total	42	~0.3 m²	53760	

Readout ASIC VATAGP7.1.

Number of sensitive pre-amplifier (CSA) inputs - 128 Input charges (dynamic range) - $-30fC \div +30fC$ Peaking time (slow shaper) - 500ns (typ.) Good linearity for charges up to +/- 15fC Reading clock - 4,6MHz

02.2020 – integration of the Si forward tracking detectors into BM@N setup

Tentative Design of the BM@N STS

Preliminary layout of BM@N STS was developed.

Geometry was tested in simulations in CbmRoot (E. Lavrik) and BmnRoot (S. Mertz)

Four stations are based on CBMtype modules with double-sided microstrip silicon sensors:

- **Pitch 58**µ
- Stereo angle 7.5°
- Thickness 300µ
- Sizes: 62x62, 62x42, 62x22 mm²
- Produced by two vendors: CiS (Germany) & Hamamatsu (Japan)

Material Budget x/X [%], STS

Number of modules: 292 Number of channels: ~600k Power consumption: ~15 kW

Tentative design of BM@N STS stations

Plans:

2021 – first 42 modules integration into BM@N;

2022 – BM@N STS full configuration (292 modules)

Assembling of BM@N STS modules at JINR

- Two clean rooms are already equipped for the module assembly
- Full set of jigs was developed, produced and tested on mockups
- QA procedure for all steps of assembling was developed
- Two technicians and two engineers are currently fully involved into assembling of BM@N modules
- \succ First operable module was assembled and now is under tests

Assembling of the mockups of BM@N STS modules

Beam test of the STS modules at LINAC-200

STS1,2 – Test stations with double-sided microstrip silicon sensors 15*15 mm² SC – scintillator counter 200*200 mm²

Status of the BM@N STS

Device for the Ladder assembly

Module Assembly

- Assembling of BM@N STS modules has been started in 2019. First modules were assembled.
- Quality assurance system was developed for the tests of the bonding quality during the assembly. It was tested and implemented in the assembly process and DB.
- Full assembling procedure including technological line, DB, QA, endurance and long-term stability tests should be finalized till the end of 2019

Ladder Assembly

- All components of the ladder assembly device are in the sight
- Complete device should be delivered in the end of June
- Commissioning, staff training and start of ladder assembly supposed at August – September 2019

Status of the BM@N STS

22/19 High Rest of the second second

New FEB8 designed by R. Kapell

Data processing boards during beam time

Readout electronics

- New design of the Front-end Board for BM@N STS is under developing. Will be optimized for the new version of ASIC and LDOs, requirements on the cooling and integration. Will be produced in the Oct. 2019
- Firmware for the Data Processing boards with GBT interface was developed and tested during the beam-time at Linac-200
- The following institutes are participating: GSI (Coordination), WUT (Firmware), MSU(FEB design)

Cooling

- Thermal simulations of the BM@N STS are now undergoing
- Thermal mockup of the FEB box will be assembled and tested in June 2019
- Thermal mockup of the quarter station will be assembled and tested in Oct 2019
- 2* 14 kW chillers are already in the site
- Thermal simulations will be performed together with a group from WUT and MSU

First BM@N GEM 1632x390 mm² chamber was assembled at CERN (December 2018)

Schematic cross section of BM@N triple GEM detector

GEM central tracking system performance at Ar and Kr beams (March 2018)

GEM group

Example of the event reconstruction in the central tracker in Ar+Al interaction

Seven GEM 1632x450 mm² chambers produced at CERN workshop were integrated into BM@N experimental setup.

Pile-up suppression in Ar, Kr runs: 3 µs before and 0.5 µs after trigger signal

Amplitude, ADC counts Amplitude, ADC counts **GEM X&Y amplitude distributions**

Fragments of Ar beam in one of the GEM chambers

Magnetic field 0.6 T, Ar(80)/Isobutane(20), Ar beam, Edrift = 1.5kV/cm

Scheme of the GEM full planes configuration inside the magnet

End of the 2019 – mechanics production, installation of the GEM planes.

TIGER (Turin Integrated Gem Electronics for Readout)

https://doi.org/10.1016/j.nima.2018.09.010

- If known the drift velocity, time information can be used to assign to each fired strip a 2D point

- Particle track is reconstructed from these coordinates

- The spatial resolution can be improved in magnetic field, especially for angled tracks

TIGER v1 - 64-channel readout ASIC was tested at BESIII Experiment (New Inner Tracker based on **Cylindrical Gas Electron Multiplier**)

TIGER V2. Programmable gain: range 50-300 fC Input Sustained event rate > 100 kHz/ch Measured performance of the TIGER ASIC: Input charge 5-55 fC TDC resolution 30 ps RMS Time-walk (5-55 fC range) 12 ns Average gain 10.75 mV/fC Nonlinearity (5-55 fC range) 0.5% RMS gain dispersion 3.5%Noise floor (ENC) 1500 e^- Noise slope 10 e^- /pF Maximum power consumption 12 mW/ch

First tests with BM@N GEMs are planed 10.2019 at CERN

Hybrid central tracker for heavy ion runs: BM@N STS vs STS +GEM

Hybrid STS + GEM tracker:
▶ 2 times increase in number of reconstructed tracks and Λ hyperons
▶ 2 times better momentum resolution

Forward Si+ STS +Gem configuration

Four configurations of the tracking detectors are foreseen:

- Forward Si + 7 GEMs: beam intensity few 10^{5} Hz , 2020 2021
- Forward Si + 1 pilot STS station + 7 GEMs: beam intensity few 10^5 Hz , 2021
- Forward Si + 4 STS stations + 7 GEMs: beam intensity few 10^5 Hz, 2022
- 4 STS stations + 7 GEMs (fast FEE): high beam intensity few 10^6 Hz, 2022-

Performance of 1065x1065 mm² CSC chamber in Ar, Kr runs

Residual (CSC_hit – GEM) < 2cm

100

Schematic view of 2190x1453 mm² CSC

Two cathode planes with strips inclined at $0^{\circ}\,and\,15^{\circ}$

Each cathode plane consists of 8 printed circuit boards.

Each pcb is divided on hot and cold zones.

Two 2190x1453 mm² CSC chambers are to be installed before and after ToF-700

Design and assembly – JINR LHEP

Status ToF-400

Preliminary result of identification, GEM+CSC track extrapolated to ToF-400

Proton $Mass^2 = 0,894 + -0,081 \text{ GeV}^2/c^4$, Pion $Mass^2 = 0,021 + -0,016 \text{ GeV}^2/c^4$

Status ToF-400

Examples of the efficiency distributions for the ToF – 400 planes located downstream CSC GEM+CSC tracks extrapolated/ Residual < 3cm/Average efficiency~90%

Examples of the efficiency distributions for the ToF – 400 planes (right arm, CSC is not installed) GEM tracks extrapolated/ Residual < 3cm/Average efficiency~80%

Status ToF-700

Efficiency estimated for pair of chambers located one for another is $\sim 96\%$

ToF time calibration procedure was developed. Final tests of the algorithm are being performed.

ECal Design

Location of Ecal in the magnet **SP-41**

(SiPM) (multipixel photon counter)

> $\frac{(2.98\pm0.05)\%}{=} \oplus (2.94\pm0.04)\%$ $\sqrt{\mathbf{E}}$

The selection of electromagnetic shower using time analysis of signals

The result of the time analysis two photons event selection

ZDC Status

35 FHCAL MPD modules (16 BM@N+19_MPD)

To be replaced

Transportation of CBM modules (20 pcs), FHCAL BM@N modules (16 pcs) and FHCal MPD modules (19 pcs) from INR at JINR was performed.

Motivation for MPD/CBM hadron calorimeter:

- Modern technics;
- Light yield ~x10 higher;
- Detection of low energies;
- Stable operation at high count rates;
- Experience in operation for later MPD/CBM experiments

<u>54 modules:</u> Yellow – CBM modules – 20x20 cm, 10 sections – 20 modules - 10 T Blue – MPD modules – 15x15 cm, 7 sections - 34 modules - 6.8 T

Biological Protection Calculation for Au+Au interactions

Additional protection to be built before heavy ion beams are delivered to the BM@N experimental setup

MDC(Mobile data storage and DAQ center) was installed at 205 bld.

Summary:

Detector Subsystem	Status	Upgrade Status
Beam pipe before the target, target station		end of 2019
Forward Si detectors	3 small planes	3 full-size planes (02.2020)
STS BM@N		42 modules (2021) 292 modules (2022)
GEM	7 top half-planes + 1 bottom half-plane	7 full planes (2019)
CSC	l chamber 1065x1065 mm²	4 chambers 1065x1065 mm²(2019) 2 chambers 2190x1453 mm²(2020-21)
ECAL	one arm	two arms (2019)
ToF-400	full configuration	
ТоҒ-700	full configuration	
ZDC	ZDC Pb+Sci sandwitch	ZDC (MPD/CBM type) (2019)

Summary:

The international collaboration BM@N was established in April 2018 (230 members, 21 institutions, 11 countries).

-BM@N technical runs performed with deuteron and carbon beams at energies T0 = 3.5 - 4.6 AGeV and with Ar beam of 3.2 AGeV and Kr beam of 2.4 AGeV

- Major sub-systems are operational, but are still in limited configurations

- Algorithms for event reconstruction and analysis are being developed, signals of Λ hyperon decays are reconstructed

Major BM@N plans for heavy ion program:

- Collaborate with CBM to produce and install large aperture STS silicon detectors in front of GEM setup

- Extend GEM central tracker and CSC outer tracker to full configuration
- Implement vacuum beam pipe through BM@N setup

BM@N Collaboration: 21 Institutions from 11 countries, 230 participants