The XXVII International Symposium on Nuclear Electronics and Computing NEC'2019

Realistic simulation of the MPD Time Projection Chamber with Garfield++

Bychkov Alexander, Rogachevsky Oleg LHEP, JINR Montenegro, 2019

Schematic illustration of the working principle and the read-out chambers of the TPC

4/16

Thank you to ALICE for original image

TPC important parameters

Gas composition: Ar 90% + CH₄ 10%

Temperature: 293.15 K (20° C) *Pressure : Atmospheric + 2 mbar* Magnetic field: 0.5 Tesla **Electric field : 140 V/cm** Drift length : 163 cm HV electrode voltage : -23 kV Gating grid voltage : -42.5 V (opened) -42.5 V ± 100 V (closed) Shielding grid (anode) voltage : 0 V Sensing grid (cathode) voltage : 1400 V

MPD TPC Read Out Chamber (ROC)

Garfield++ software

a toolkit for the detailed simulation of detectors which use gases or semi-conductors as sensitive medium

Ionization calculation by **HEED** program

Electric fields calculations with different mathematical techniques

Transport and avalanches of electrons by Magboltz program

Values obtained by Garfield++

Electrons drift velocity : 5.538 cm/\mus ± 0.018%

Longitudinal diffusion : 0.0347 cm^{1/2} ± 2.5%

Transverse diffusion : 0.0228 cm^{1/2} ± 3.2%

Gating grid voltage : -42.5 V (-/+100 V for closed gate)

9/16

10 ions+ drift simulation

11/16

10 000 ions+ drift simulation

Induced current with different gate voltage

SAMPA-electronics response 2.5 signal [mV] $f(x) = A\left(\frac{x-t}{\tau}\right)^{N} e^{-N\left(\frac{x-t}{\tau}\right)}$ N = 4 $\tau = 160$ 2 A = 20 mV/fC1.5 0.5 0 500 1500 2000 1000 0 14/16time [ns]

Conclusion

Updated basic parameters of electrons drifting

Simulated for ROC chambers:

field maps e⁻ / ion⁺ drift paths signal on ROC pad plane for different gate voltages electronic response for signal on ROC pad plane

This work was supported by grant of Russian Foundation for Basic Research (18-02-40102).

THANK YOU FOR YOUR ATTENTION