
Containerized services for FEL
data processing

Anton Teslyuk, Sergey Bobkov, Viacheslav Ilyin
NRC Kurchatov Institute

30 Sep – 4 October 2019, Budva, ME

European XFEL

• X-Ray Free-Electron Laser -
mega science research facility
• High brilliance (109 times more than

conventional X-ray source)
• High frequency: up to 27000 flashes

per second
• Wavelength range: 0.05-4.7 nm
• Short pulses: less than 100 fs

• Construction start – Jan 2009
• First experiments – Sep 2017

SPI Experiments

• The goal: Molecule structure at atomic
level (1A)
• Big data:

• 120 Tb per experiment (Dec 2017)
• 360 Tb per experiment (May 2019)
• expected to be increased 100x times!

• Experiments evolve rapidly
• Data Analysis is also under intensive

development:
• Algorithms
• Software
• IT services

X-ray pulse

Particle
injection

Diffraction
pattern

*Gaffney K. J. & Chapman H. N.// Science, 2007.

The Goal of the Project

• Software Pipeline for automated
data processing
• From diffraction patterns to 3D

structure in near real-time
• Core Ideas:
• Integration of software packages for

various stages of data analysis in
analysis pipeline
• Simple configuration and deployment
• Scalability
• Extensibility, modular architecture
• Various workflows

Structure Reconstruction Pipeline

Briefly

A little bit more detailed

Realization Strategy

• Container technology for easy

deployment

• Microservices for individual stages of

analysis

• Container orchestration for scalability and

management

• Shared network filesystem to reduce data

transfers

Testbed

• Dedicated K8s cluster (version

v1.15.3) with three nodes

• Dedicated CEPHfs storage

• 1Gbps interconnect

Microservices Architecture for Data Processing Pipeline

• Split analysis pipeline
into small
components

• Pack components into
containers

• Use container
orchestration
infrastructure to
distribute containers
across computing
cluster

Data Exchange Scheme
• Data is stored in a shared filesystem

(GPFS, Lustre, CEPH) in HDF5
• K8s based container orchestration is

used for:
• containers deployment
• load balancing
• internal and external

communications
• services monitoring and

management
• Native K8s support for CEPHfs volumes

Services and Jobs in K8s
Services model of operation

root@c003f610f7a5:/opt/wsgi_app# curl -H "Content-Type: application/json" -d @test.json localhost/phase
[8.3701095581054688, 0.090004101395606995, 0.049716383218765259, 0.12340822815895081, 0.084595672786235809, 0.077844396233558655,
0.065120011568069458, 0.068547621369361877, 0.024556649848818779, 0.024488534778356552]

Jobs

root@c003f610f7a5:/opt# kubectl create -f phaser-job.yaml

Use Cases: Orientations Determination

• Dragonfly
• EMC algorithm for orientations reconstruction
• High quality code
• MPI
• GUI interface

• It is the bright case where HPC application meets HTC (Cloud)!

+ = ?

HPC vs HTC

• Different focus, history, architecture, ecosystem
• HPC – parallel computing. Intensive communications between nodes
• HTC – data and services centric. Loosely coupled services

• Possible scenarios of combined usage
• application code refactoring
• run HTC workloads in HPC systems (Singularity, Shifter)
• virtualize HPC infrastructure in HTC systems
• maintain separate infrastructures

Our realization

• Kube-openmpi, MPI infrastructure for
Kubernetes
• MPI nodes as Docker containers
• OpenMPI 2.1.2

• Run Dragonfly as a native MPI application inside
virtualized HPC cluster

Node 1

Node 2

kubectl mpiexec –n 16
./run_emc.py –f emc.ini

Kubernetes Cluster

GUI applications inside services
• autoplot.py as a HTTP service
• realtime EMC monitoring from browser

Autoplot.pyXpra X11
remote Server

HTML5
Renderer

Docker Container (HTTP Service)

Conclusions and current status
• We have tested existing FEL data analysis software to work in

containerized Docker infrastructure. Container technology looks to be
effective to integrate heterogenous software with different environment
requirements.

• Various patterns of software usage in K8s infrastructure were analyzed
and tested: loosely coupled parallel computations, GPU-computing, HPC
(MPI) workloads, GUI applications.

• Next step: arrange individual microservices into data analysis pipeline

Acknowledgements

Presented results are supported by the Helmholtz Associations Initiative and Networking Fund and the Russian Science
Foundation (Project No. 18-41-06001).

Joined Team from
KI and DESY

Thank you for your attention

