

Deep Learning Methods in the NOvA Experiment

Chris Kullenberg Nuclear Electronics & Computing 2019

Why NOvA?

NuMI Off-axis v_e Appearance Measure neutrino oscillation parameters! (among other interesting neutrino topics)

- Neutrino oscillations cause different neutrino flavors to appear during interaction than when created during production
- Understanding these oscillations helps us understand fundamental properties of the neutrino
- The beam composition is measured at the Near Detector (mostly muon neutrinos)
- The number of electron/muon neutrinos appearing at the Far Detector provides the oscillation measurement

The NOvA Experiment

NOvA is basically a pair of neutrino detectors, with identical construction but different sizes. The Far Detector as large as the estimated size of the largest known dinosaur.

Made of alternating vertical/horizontal (X/Y) oriented tubes filled with liquid scintillator.

NOvA Data

NOvA Data

 μ s window in the Far Detector

NOvA Data

 μ s window during active beam

How to Distinguish Neutrino Types?

Categorize Events Using CNN

A Convolutional Neural Network uses image preprocessing to reduce data flowing to the Neural Network, while identifying and retaining useful patterns.

Preprocessing generally consists of:

Multiple layers of Convolution (pattern searching), Pooling (information reduction), and "1x1 Convolution" (information reduction and pattern interweaving)

Basic Network Layers

10

Kernels (patterns) used in convolution are learned by the network!

(pattern search)

(information reduction)

Network Inspiration

GoogLeNet (2014)

Inception modules are groups of Convolution/Pooling layers that include 1x1 Conv. to reduce the parameters in the network, allowing for deeper networks.

NOvA's Event Classification CNN

12

80x100 matrix of energy deposits are extracted from the detector data. Greatly reduces data flow through network

X and Y-views are sent separately through the two towers of NOvA's network

The towers are merged, and the network outputs a value for each interaction type, which is Softmax normalized

Event Classification Network Results

13

Published. 2016

JINST 11 (2016) no.09, P09001

A Convolutional Neural Network Neutrino Event Classifier

A. Aurisano, A. Radovic, D. Rocco, A. Himmel, M. D. Messier, E. Niner, G. Pawloski, F. Psihas, A. Sousa, P. Vahle (Submitted on 5 Apr 2016 (v1), last revised 12 Aug 2016 (this version, v3))

Particle Identification

Particle identification is necessary for in-depth physics analysis.

- Neutrino interactions in the detector are simulated
- Hits are clustered into tracks
- An interaction vertex is determined
- Single particle tracks are separated for training

Particle ID Network

Context provides up to an 11% improvement in efficiency and purity!

Particle ID Network Results

Efficiency

Purity

Using this network as an input to the electron neutrino energy estimator the energy resolution is 11%, an improvement of 20% compared to previous methods.

Submitted to PRD

arxiv:1906.00713

Context-Enriched Identification of Particles with a Convolutional Network for Neutrino Events

F. Psihas, E. Niner, M. Groh, R. Murphy, A. Aurisano, A. Himmel, K. Lang, M. D. Messier, A. Radovic, A. Sousa

Future Implementations/Improvements

- Continue to improve event classification network and particle ID network
- NOvA has created a CNN to improve v_e and electron energy estimation: PRD: DOI: 10.1103/PhysRevD.99.012011
- Creation of LSTM network to improve v_{μ} energy estimation
- CNN to reduce cosmic ray background
- The NOvA test beam detector will provide labeled data from single-particle interactions allowing for data-driven checks of deep learning methods
- And more....

Backup Slides

ν_e Energy Estimator Network

- Uses flat neutrino flux to increase low energy events
- 0.98 Million v_e interactions 0.75/0.23 Mil. train/validate
- Keras/Tensorflow
- Used SHERPA to optimize hyperparameters

20

The network uses a modified version of the classification network, where the event's vertex position is concatenated with the preprocessing output to correct for readout threshold.

Electron Energy Estimator Network

- Uses standard NOvA neutrino flux
- 660 K electron tracks
 610 K / 5 K train/validate
- Keras/Tensorflow
- Used SHERPA to optimize hyperparameters

Uses the same network structure as the v_e energy estimator, but with different weights. Both use 151x141 pixel detector readouts as input, which include 99.5% of hits.

Classification Network Training

- 4.7 Million events for training (80%/20% train/validate)
- Mini-Batches of 32 events
- Dropout rate of 0.4
- 1 week of GPU-hours on
 2 NVIDIA Tesla K40s
- Uses Caffe

Pixel intensities varied with Gaussian noise, and a portion of events were reflected along the z-axis (nearly parallel to beam) to increase sample size and reduce the importance of individual pixel intensities.

Particle ID Network Training

0.9

23

- 2.95 Million particles for training (80%/20% train/validate)
- Mini-Batches of 64 events
- 700,000 iterations
- 4 NVIDIA Tesla K20 GPUs
- Uses Caffe

Event selection of π^0 decays (photon pairs) has a purity of 92%, which is a great improvement over 60% gotten from previous methods!

Reducing Cosmic rays

1000

2000

Under development

NOvA is exploring cosmic ray background reduction with CNNs.

INPUTS: X and Y views of the whole detector

Fernanda Psihas

500

TAUP - NOvA Results & Prospects

Particle Identification with CNNs

We use our Deep CNN classifier to identify each cluster.

Localizing + Clustering + Identification

MASK-RCNN

We use an adaptation of MASK-RCNN to cluster and identify all activity.

TAUP 2019 - NOvA Results & Prospects

Energy Reconstruction with LSTMs

Recurrent Neural Networks:

Sequential network using the current state of the system + the output from last iteration.

LSTM: RNN + Long term memory cell

NOvA Test Beam

The NOvA test beam detector is being currently taking data and will continue throughout 2019.

With a **library of labeled data from single particle interactions** of known identity and momentum, NOvA will expand the data-driven checks of our deep learning algorithms.

April APS 2019 - NOvA Deep Learning

Data-driven test example

Fernanda Psihas

April APS 2019 - NOvA Deep Learning