

Detector performance of the **CMS Precision Proton Spectrometer** during LHC Run2 and its upgrades for Run3

Fabrizio Ferro INFN Genova

Istituto Nazionale di Fisica Nucleare

On behalf of the CMS and TOTEM collaborations

Montenegro, Budva, Becici, 30 September - 4 October 2019

Physics motivations for a Precision Proton Spectrometer at the LHC

The importance of measuring the protons that survive the interaction

Central exclusive production ($J^{PC} = 0^{++}$ central final state)

- Colour-singlet exchanges with large rapidity gaps between the central system and the outgoing protons
- Two-photon, photon-pomeron or two-pomeron exchanges at LHC energies allow access to a large variety of processes
- Electroweak physics: diboson and dilepton production, anomalous coupling searches
- QCD: dijet, trijet, ttbar production
- BSM direct searches: new resonances, missing mass, etc.

Advantages of the forward proton measurement

- Strong background suppression by requiring kinematic match with the central system
- Reduced theory uncertainties related to proton dissociation

Experimental requirements

- Operate as close as possible to the beam line (~1.3 mm from the beam axis) without preventing LHC stable operation
- Run detectors in high radiation environment (proton flux up to 5 10¹⁵/cm²)
- Cope with high pile-up of standard LHC running (~38 average PU events in Run2)

Two complementary measurements

- Tracking detectors: measure the proton displacement with respect to the beam
 proton momentum loss via the knowledge of the beam optics
- Timing detectors: measure the proton TOF in both arms w.r.t. a reference clock (for synchronization) ⇒ longitudinal position of the pp interaction

LHC magnets bend the protons. Roman Pot insertions in the beam line contain the detectors.

NEC 2019 F.Ferro - INFN Genova

Roman Pot: a key device

A typical detector package

PPS vs time

CMS-TOTEM

https://cds.cern.ch/record/1753795

Project approval in 2014 as a joint venture of TOTEM and CMS collaborations

Exploratory phase in 2016

Always inserted and taking data, fully integrated in CMS runs, in 2017 and 2018 Very high stability in both 2017 and 2018

LHC Run2

	Tracking	Timing	Luminosity (wrt CMS)
2016	Si Strips		15 /fb (39%)
2017	Si Strips + 3D Pixels	Diamonds + UFSD	40 /fb (88%)
2018	3D Pixels	Diamonds	60 /fb (93%)

LHC Run3

2021	3D Pixels	Diamonds	

NEC 2019 F.Ferro -

Detectors for Run2

TOTEM si-strips

3D pixels

scCVD (diamond)

Ultra-fast silicon detectors

- 2016 Detectors
 - Tracking: 2 stations of TOTEM **Si-strips** detectors (10 planes), 20 μ m resolution. **Limited radiation resistance** ($\Phi_{max} \sim 5 \cdot 10^{14}$ p/cm²), **no multi-track capability**.
 - Timing: diamond detectors in cylindrical RP

• 2017 Detectors

arm

In both

- Tracking: 1 station of TOTEM si-strips, 1 station of silicon **3D pixels** (6 planes with CMS Phase 1 tracker readout chips), $\sigma_x \sim 15 \ \mu m$ and $\sigma_y \sim 30 \ \mu m$, $\Phi_{max} \sim 5 \cdot 10^{15} \text{p/cm}^2$
- Timing: 1 station with 3 planes of single-layer **diamond** with expected $\delta_t = 80$ ps/plane and 1 plane of **UFSD** with expected $\delta_t = 30$ ps/plane ($\Phi_{max} \sim 10^{14}$ p/cm²)

2018 Detectors

- Tracking: two 3D pixels stations
- Timing: 1 station of diamond detectors (2 single-layer + 2 double-layer)

NEC 2019

2017-2018 detector configuration 2017: an intermediate step towards design setup 2018: design setup

INFN Genova ondary vacuun

3D pixels

- \checkmark 6 planes of 3D pixel silicon detectors per Pot
- ✓ Sensors read out with 4 or 6 PSI46dig ROCs, depending on the sensor size
- Data collected and serialized by a TBM (token bit manager)
- ✓ Modules wire-bonded to a flex hybrid connected to the RPix portcard (interface between modules and FE electronics)
- ✓ Same front-end boards for data (FED) and control (FEC) as Phase I CMS pixel tracker
- ✓ Pixel dimension 150x100 μm

Double diamonds for timing

single-crystal CVD (Chemical Vapor Deposition) diamond detector

Two scCVD sensors installed back to back and connected in parallel to the same amplifier channel

Sensor time resolution: ~50 ps per plane (measured in test beam)

Digitization stage (NINO+HPTDC) degrades resolution by 30% (low sensor S/N). Optimization work ongoing.

PreAmp 5 mm Via (1.3 mm) ~8 mm

Signal almost doubled wrt single diamond

[a] TOTEM Coll., JINST 12 (2017) P03007
[aa] F. Anghinolfi et al., NIM A 533 (204) 183
[aaa] M. Mota and J. Christiansen, IEEE JSSC 34 (1999) 1360

NEC 2019

2018 data: hit maps

LHC Sector 45 ←

LHC Sector 56

NEC 2019

Tracking efficiency studies

- Main strips inefficiency due to no multitracking:
 - 30% efficiency at pileup of 50
 - Solution: pixel detectors

- Radiation damage effects on the sensors reduced when moving to pixels:
 - However, **non-uniform irradiation** affects the PSI46dig readout chip performance
 - Efficiency loss mitigated by moving the stations vertically during technical stops

October-19

Pixel detector efficiency (2017)

Efficiency computed with tracks reconstructed within the same station

- Evolution of the radiation damage vs. integrated luminosity after LHC second Technical Stop (~18 fb⁻¹ taken before TS2)
- Inefficiency spot caused by radiation damage is moved away from the highoccupancy region when the station is lifted
- The radiation effect starts to be visible at ~8 fb⁻¹

- Very high performance overall: average efficiency ~98%
 - Few damaged pixels: $\sim 1.5 \times 0.3$ mm², caused by non-uniform irradiation of the readout chip

Timing perfomance

- Run 2 data being reprocessed with optimized calibration.
 Complete results on performance will be available soon.
- σ_t ~ 50 ps time resolution measured per plane in test beams per plane of double diamond detector (to be confirmed by analysis from Run 2, w.i.p.)
- First estimation of double-diamond sensor efficiency in after 2018 runs is still > 94 %

Diamond and pixel track correlation

Double Diamond efficiency on test beams (2019)

LHC Run 3 (2021-23) preparation

Tracking:

- 2 horizontal pots with silicon **3D pixels sensors** (sensor technology slightly different wrt Run2)
- PROC600 readout chip instead of PSI46dig (same as CMS pixel detector layer 1)
- New internally motorized detector package, to distribute the radiation damage and reduce its impact
- Timing:
 - 2 horizontal pots (instead of 1)
 - equipped with double-layer diamond sensors
 - Optimized readout electronics

Piezoelectric motor

Conclusions

- PPS has proven the feasibility of continuously operating a near-beam proton spectrometer at a high-luminosity hadron collider
- PPS has successfully collected ~115 fb⁻¹ of data during LHC Run 2, with very good overall performance
 - CMS is publishing physics papers with data collected by PPS
 - first paper https://link.springer.com/article/10.1007%2FJHEP07%282018%29153
 - 2017 and 2018 detector performance studies are being finalized
 - The preparation for LHC Run 3 is ongoing:
 - New detectors are getting ready to be installed for the future data taking
 - A rich physics programme lies ahead, with many final states to be studied