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Ef an ef_python

Low-energy particle simulation using the Particle-in-Cell (PIC) method
Open-source

Focus on modeling ion sources and particle beams

Support for external fields, conducting volumes and particle generators




Particle-in-cell
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Particle mover

e Leapfrogsecond-order explicit method (Boris scheme)
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Field solver

e Poisson equation (no dynamic magnetic field) Ao = —dnmp
e Finite Difference Method (FDM) on a rectangular grid
e Initially solved by conjugate gradient method with scipy.sparse.linalg.cg



Each time step

e Push particles
o  Getelectric field at particle positions(grid-to-particle, linear interpolation)

o Push particle positions

Generate new particles

Solve field
o  Evaluate collective charge density (particle-to-grid)
o  Solve poisson equations for potential
o  Compute field from potential (just gradient)

e Prepare new particles

o Get field at new particles(grid-to-particle, linear interpolation)
o  Setnew particle velocities half a time step back



Algebraic Multi-Grid solver

e  Multi-scale methods for faster FDM solving bidtliliepte DOl S s i Ab S Al
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Repeat Until Convergence




PyAMG and AMGX
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Algebraic Multigrid Solvers in Python



Non-GPU improvements

e Usediagonal sparse matrix functions of Scipy
e Cachinginner nodes
e Grid-to-particle and particle-to-grid with numpy methods



Numpy to Cupy

e Intended as adrop-in replacement/upgrade
e Some methods have new names

e Nointerpolator class
o Custom CUDA kernel
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Axially symmetric beam contour
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e 50x50x100grid
e 100 steps ¢
e 5000 x 100 particles

Z[cm]
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Results

e 40x40x5000 grid, 2800 steps, 4x2800 particles
o  Simulated in 20 minutes on GPU (resources provided by JINR HybriLIT cluster)
e GPU accelerated every step of the simulation process

o  Optional, by default using pyamg and numpy
o Except output and equation matrix creation

200+ tests with 91% coverage

Next step:
o OpenCL
o MPI
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Thank you!

e Thereported study was funded by RFBR according to the research project Ne 18-32-00239
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