Accelerating the particle-in-cell method
of plasma and particle beam simulation
using CUDA tools.

lvan Kadochnikov - kadivas@jinr.ru

NEC 2019

Ef an ef_python

Low-energy particle simulation using the Particle-in-Cell (PIC) method
Open-source

Focus on modeling ion sources and particle beams

Support for external fields, conducting volumes and particle generators

Particle-in-cell

Pjj = 20,Sh

dp = Fdt

o o fe
[] []
® 0l P+ ® @i 9ij1®
[) ® Ao = -4mp [J o
—
o [} ®
Pi+1j |Pis1j+1 Qir1i [Pirj+1
{] ® []
S O o
E =-Vo
IS o o
[] \ []
® P~ OE;| E .o
() [] [] o
\ / F, =2E; S,
] o
o | 7N X o
\ / Ei+1,j Ei+1,j+1
[] o [] {]
O/ \

Particle mover

e Leapfrogsecond-order explicit method (Boris scheme)

Tit1 =Ti+ Vi 0At
qAt

‘..”I
qAt : 5 K
; (vy +v_)x B(r;)
Lmec

r]f

Vier2=Vy+ E(r;)

Vy=V_+

E(i)

Vo =V, _ 12+

Field solver

e Poisson equation (no dynamic magnetic field) Ao = —dnmp
e Finite Difference Method (FDM) on a rectangular grid
e Initially solved by conjugate gradient method with scipy.sparse.linalg.cg

Each time step

e Push particles
o Getelectric field at particle positions(grid-to-particle, linear interpolation)

o Push particle positions

Generate new particles

Solve field
o Evaluate collective charge density (particle-to-grid)
o Solve poisson equations for potential
o Compute field from potential (just gradient)

e Prepare new particles

o Get field at new particles(grid-to-particle, linear interpolation)
o Setnew particle velocities half a time step back

Algebraic Multi-Grid solver

e Multi-scale methods for faster FDM solving bidtliliepte DOl S s i Ab S Al

PHI F R R1 R2 R PHI

TP :
Gauss Seidel sSsass|

fof
2
4
i
@
&

!

Repeat Until Convergence

PyAMG and AMGX

Yin

i
S,

Algebraic Multigrid Solvers in Python

Non-GPU improvements

e Usediagonal sparse matrix functions of Scipy
e Cachinginner nodes
e Grid-to-particle and particle-to-grid with numpy methods

Numpy to Cupy

e Intended as adrop-in replacement/upgrade
e Some methods have new names

e Nointerpolator class
o Custom CUDA kernel

10

Axially symmetric beam contour

5

e 50x50x100grid
e 100 steps ¢
e 5000 x 100 particles

Z[cm]

10

11

Results

e 40x40x5000 grid, 2800 steps, 4x2800 particles
o Simulated in 20 minutes on GPU (resources provided by JINR HybriLIT cluster)
e GPU accelerated every step of the simulation process

o Optional, by default using pyamg and numpy
o Except output and equation matrix creation

200+ tests with 91% coverage

Next step:
o OpenCL
o MPI

12

Thank you!

e Thereported study was funded by RFBR according to the research project Ne 18-32-00239

13

