
NEC 2019

Accelerating the particle-in-cell method 
of plasma and particle beam simulation 
using CUDA tools.

Ivan Kadochnikov - kadivas@jinr.ru



Ef an ef_python

● Low-energy particle simulation using the Particle-in-Cell (PIC) method

● Open-source

● Focus on modeling ion sources and particle beams

● Support for external fields, conducting volumes and particle generators

2



Particle-in-cell

3



Particle mover

● Leapfrog second-order explicit method (Boris scheme)

4



Field solver

● Poisson equation (no dynamic magnetic field)
● Finite Difference Method (FDM) on a rectangular grid
● Initially solved by conjugate gradient method with scipy.sparse.linalg.cg

5



Each time step

● Push particles
○ Get electric field at particle positions(grid-to-particle, linear interpolation)
○ Push particle positions

● Generate new particles

● Solve field
○ Evaluate collective charge density (particle-to-grid)
○ Solve poisson equations for potential
○ Compute field from potential (just gradient)

● Prepare new particles
○ Get field at new particles(grid-to-particle, linear interpolation)
○ Set new particle velocities half a time step back

6



Algebraic Multi-Grid solver

● Multi-scale methods for faster FDM solving

7



PyAMG and AMGX

8



Non-GPU improvements

● Use diagonal sparse matrix functions of Scipy

● Caching inner nodes

● Grid-to-particle and particle-to-grid with numpy methods

9



Numpy to Cupy

● Intended as a drop-in replacement/upgrade

● Some methods have new names

● No interpolator class
○ Custom CUDA kernel

10



Axially symmetric beam contour

● 50 x 50 x 100 grid

● 100 steps

● 5000 x 100 particles

11



Results

● 40x40x5000 grid, 2800 steps, 4x2800 particles
○ Simulated in 20 minutes on GPU (resources provided by JINR HybriLIT cluster)

● GPU accelerated every step of the simulation process
○ Optional, by default using pyamg and numpy
○ Except output and equation matrix creation

● 200+ tests with 91% coverage

● Next step:
○ OpenCL
○ MPI

12



Thank you!

 

● The reported study was funded by RFBR according to the research project № 18-32-00239

13


