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HL-LHC

● The high luminosity large hadron collider (HL-LHC) project is a major upgrade of the current collider.
● HL-LHC will probe Nature for evidence of “new physics” (NP).
● First beam: mid-2026.
● HL-LHC luminosity increase: from ~2×1034 to 5-7×1034 cm−2 s−1.
● Pile up (PU) increase from ~50 up to 140-200 interactions per bunch crossing (BX).
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The CMS Experiment 

● The compact muon solenoid (CMS) experiment is a general purpose experiment designed 
for a broad physics programme.

● Major CMS upgrade planned for HL-LHC.
● Main Level 1 trigger changes:

○ Rate: from 100 to 750 kHz
○ Latency: from 4 to 12.5 μs 
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The Level 1 Trigger
● Level 1 divided into two steps: trigger primitive generation (TPG) and correlator.
● The L1 trigger will implement a so-called time multiplex (TMUX) architecture. 
● TMUX allows a boundary reduction and helps to collect data from a single bunch crossing 

into a single processing unit.  

4Vito Palladino - Nec’2019



The HGCAL

Current design 
(2 x EC)

CE-E (Si) CE-H (Si) CE-H (Scint)

Area (m2) ~165 ~1250 ~200

Channels (k) ~2000 ~2000 ~200

Modules (Si/Tileboards) ~8000 ~4500 ~2000

Weight (t) ~20 ~200

Si-only Planes 28 8

Si-Scint Mixed Planes - 14

● The HGCAL has been indicated as solution to 
confront the increase in radiation dose and 
pile up (PU) for the endcap regions (TDR ‘18).

● Narrow VBF jets and jets with substructure 
are expected to be a signature for NP.

● Electromagnetic Section (CE-E):
○ 28 layers (Si-only)
○ CuW+Cu+Pb absorber
○ 25 X0
○ 1.3 λ0

● Hadronic Section (CE-H):
○ 22 layers (Si-only + Si-Scint)
○ Stainless Steel absorber
○ 8.5 λ0

*CERN-LHCC-2017-023.
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● Radiation tolerance:
○ Si-only planes in the high radiation region,
○ Scint+SiPM in the low radiation region ➛ 

hybrid planes in downstream half of HGCAL,
○ Active cooling at -30 oC (~120 kW/endcap).

● Lateral shower confinement: dense 
calorimeter absorber.

● Adjacent shower separation: fine lateral 
granularity (two cell sizes 0.5 and 1.2 cm2). 

● PU rejection, PID and energy resolution: fine 
longitudinal granularity (50 layers). 

● PU energy rejection: good time resolution 
(25 ps).

The HGCAL

~2.0m

~2.3m

34cm

1.5m

Scintillator

Silicon

CE-E CE-H
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● Silicon wafers and scintillator tiles hosted by motherboards.
● Motherboards provide all the connectivity to the back-end.
● Hi bandwidth variability in r and z.
● The number of elements per motherboard is variable in order to adapt to the region occupancy.

HGCAL Electronics Structure
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● Trigger capabilities in the forward region will be a key feature of the CMS detector during 
its Phase-2.

● The HGCAL will generate trigger primitives (TP) relying on its high granularity.
● TP will be a set of 3D clusters for each bunch crossing.
● These clusters will be combined with the other TPs from other detectors in the central 

Level 1 trigger to implement particle flow algorithms at trigger level.

Physics Motivation for HGCAL Trigger
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Real event 
(test beam)

Particle flow 
example event
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From the Front End Electronics to the TPG

● The trigger primitive generator (TPG) will receive data from the front-end (FE) 
electronics via 100 m long fiber bundles.

● Links will be implemented via the radiation-hard low power gigabit transceiver 
(lpGBT*), that is part of the CERN ‘versatile link+’ project (VL+). 

● Each link will implement a FEC5 protocol over a 10 Gpbs link speed (8.96 Gpbs 
usable for data transmission).

● Trigger data will be sent to the TPG with a latency of 50 BX (1.25 μs) and a window 
of 12 BX. 

*https://espace.cern.ch/GBT-Project/LpGBT/Specifications/LpGbtxSpecifications.pdf
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● Bandwidth is an expensive element of the system.
● There will be O(10000) links @10 Gbps (~100 Tbps) from the FE to the TPG. 
● Required bandwidth per wafer varies by more than one order of magnitude 

over different regions.
● Balancing bandwidth minimization and physics requirements has been 

carefully studied.
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The HGCAL Trigger Primitive Generator

Trigger Cells
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● In order to reduce the bandwidth to the TPG:
○ The electromagnetic region is readout every other layer.
○ The data are read out at reduced granularity (9 or 4 times coarser, radius dependent).
○ No timing cell information is readout.
○ Threshold applied in FE to limit number of trigger cells read out.
○ FE buffering and variable data volume → possible overflows. 

The Bandwidth Challenge

Trigger Cells
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● ATCA standard.
● Generic motherboard common to other subsystems.

○ Exchangeable FPGAs on daughterboards ➛ versatile + cost 
reduction.

○ Up to 72 in and 72 out links (link speed up to 28 Gpbs).
○ Optical links are implemented using FireFly™ Micro Flyover 

System™ (Samtec).
● Board control is provided by an industry standard COM 

Express mounted directly on-board running CentOS 7.
● Wide commissioning campaign started to ensure reliability 

and system robustness:
○ Temperature stress.
○ Optical modules reliability.
○ Ageing tests.

The Serenity Platform
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Measured
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● TPG design will use a two stage design.
● The TPG will implement time-multiplex 

(TMUX) architecture. 
● Every Stage 2 FPGA will receive data from 

a wide region (120o) of the detector and 
will have a TMUX-period to process them 
(currently 18 BX).

● TMUX reduces the number of region 
boundaries which would need prohibitive 
duplicated data bandwidth. 

The HGCAL Level 1 Trigger
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● The latency is a major constraint for the 
system.

● Total latency for a trigger decision is limited 
by the on detector data buffers: 12.5 μs.

● This is includes the whole path from 
collision to trigger signal distribution to the 
FE. 

● TPG will need to deliver the primitives to 
the central Level 1 trigger within 5 μs.

● Require latency for Stage 1 + Stage 2 ≦ 
2.825 μs (113 BX).

 

Latencies

Location Component Latency (ns / BX)

On detector

FE ASIC (HGCROC) 400 / 16

Concentrator ASIC 575 / 23

SerDes to TPG 600 / 24

Off detector

SerDes to Stage 2 150 / 6

Stage 2 TMUX 450 / 18

Serdes to central L1T 150 / 6

Stage 1 + Stage 2 ≦ 2825 / 113

Total 5000 / 200
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TPG Stage 1

● This stage provides:
○ Calibration is applied.
○ Corrections due to high charge deposit on 

previous BX are also implemented.
○ TMUX is implemented (x18 BX).

● Mounting Xintex KU15P FPGAs daughter 
cards (DC): 

○ 72 links from the FE electronics
○ 54 links to each Stage 2 FPGA: 3 links to 

each Stage 2 board. 
○ Firmware core provided by the Serenity 

community and 3rd parties (colored).
○ HGCAL specific firmware needs 

implementation.
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TPG Stage 2

● The Stage 2 main goal is to generate the 
trigger primitives from the calibrated high 
granularity trigger cells.

● Mounting Xilinx VU7P FPGAs DC → more 
logic than those mounted on Stage 1.

● Each FPGA is collecting and processing data 
from a 120o detector sector and for all layers.

● The TMUX ensures that each processing 
FPGA will deal with data from the same BX 
for the whole TMUX period of 18 BX (450 ns). 

● Collecting all the data into a single FPGA is a 
design choice made in order to keep the 
system flexible for possible future algorithm 
evolution.
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Stage 2 Current Baseline Algorithm

Local 
Maxima

Smeared 
Gaussian
Kernel

Original 
Energy 
Release
(MC)
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● In order to minimise the latency the algorithm is fully pipelined.
● The Stage 2 Algorithm is made of two main steps.

○ Step1: 3D clusters are seeded using the whole dataset. Seeds are build from a projective histogram. Each bin is 
the energy sum of all the trigger cells whose coordinates are within the bin. Seeds are defined by local maxima 
after Gaussian smearing.  

○ Step 2: clusters are built around each seed. The trigger cells are compared with all the seeds and added to the 
cluster if falling within a programmable radius. 

MC 100 GeV Pion
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Conclusions

● The combined increase in detector granularity and LHC luminosity have set 
new challenges for the trigger processor of the novel High Granularity 
Calorimeter.

● A careful study of the trigger path and algorithms is underway. 
● Tailored resources have been an important factor in order to reduce costs 

and allow a more uniform use of the bandwidth and FPGA logic. 
● The current baseline for both hardware and firmware has been presented.
● The first release of the hardware is currently under test.
● The firmware implementation of both Stage 1 and Stage 2 has started.
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Backup 
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Silicon Modules

● Basic hexagonal blocks from 8’’ diameter silicon 
wafers.

● Sensor’s thickness and active cell size are η dependent: 
radiation damage minimization, better shower 
separation in the high occupancy region. 

PCB (hexaboard)

Sensor

Kapton-Au bias plane

Baseplate (                     )
Colored regions:

coarse granularity 
for trigger purposes.
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PCB   for CE-H 
Cu/W for CE-E
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● HGCAL TPG will have different interfaces towards several subsystems.
● In parallel to the main path FE→TPG→L1T we do need to:

○ Interact with the DAQ in order to 
○ Send debug data to the central DAQ and receive timing information from the TCDS.
○ Get control and configuration data.

The HGCAL Whole Picture 
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Silicon Modules
● Preparation for full scale production 

undergoing at the Module Assembly Centres: 
○ China (Beijing IHEP), 
○ India (Mumbai BARC), 
○ Taiwan (Chungli NCU/Taipei NTU), 
○ USA (Carnegie-Mellon, Texas Tech., UCSB).
○ ~100 modules produced for test beam 

purposes.

● Sensors wire bonded to PCB through large 
holes.

● Thermo-mechanical studies are performed in 
order to ensure robustness during repeated 
thermal cycles (-30 to +40 oC).

6’’ prototype module

Assembly facility 
at UCSB

Assembly facility 
at NTU
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Scintillator Modules

● Plastic scintillator tiles arranged in r-φ grid.
● Tile surface varies from 4 to 32 cm2 (from 

small to large r).
● Readout is performed by on-tile SiPM.
● Tiles grouped in tileboards with max 

dimension of 45⨯41 cm2.
● Tile Assembly Centres:

○ US (FNAL)
○ Germany (DESY) 

Tileboard

SiPM

1. Tile+Foil placement
2. Foil creased
3. Foil folded on top of tile
4. Foil securely wrapping tile
5. Wrapped tile

1
2

3

4

5

Dummy tileboard ready to 
be populated 
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On-detector Electronics

● Bunch Crossing synchronous data from 
hexaboards are sent to concentrator ASICs, 
mounted on ‘motherboard’ PCB, through up 
to 36 e-links at 1.28 Gbps.

● ECON-T will select trigger data before 
transmitting  to the Back-End.

● ECON-D will send zero suppressed fine 
granularity data to DAQ.  

● DAQ path sent via lpGBT link at 10.24 Gpbs.
● lpGBT, VTRX+ and SCA are common 

developments.

Common 
Developments
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Motherboard

● Motherboards will host the ECONs and the 
transceivers to the off-detector electronics.

● Bandwidth to off-detector electronics is highly 
cost constrained.

● Up to 3 ⨯10 Gbps links to the off-detector 
electronics: 

○ 1 for DAQ
○ Up to 3 for Trigger 

● Geometry needs optimization to minimise link 
count.

Dummy assembly 8’’ modules

Average Bandwidth for 
data and trigger (in Gbs)
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Front End Electronics: HGCROC ASIC

● Two different input stages for Si and Scint.
● Final version of the final HGROC chip expected 

in early-2021.
● High dynamic range: from 0.2 fC to 10 pC.
● 10-bit ADC + ToT (12-bit TDC).
● ToA: 

○ Available for deposits above 10-15 fC, 
○ 10-bit TDC, step < 25ps range up to 25 

ns, 
○ Precision for hit ≤100 ps, and ~30 ps for 

showers.
● Low power: ≤ 15 mW/channel.
● High radiation environment: up to 2 MGy and a 

fluence of 1016.
● Technology: CMOS 130 nm.

100 fC
(~30 MIP)

10 pC
(~3000 MIP)

 HGCAL 
FE

● High dynamic range 
● Triggering capabilities

● Radiation tolerance
● MIP sensitivity
● Space constraint

Calorimeter Pixel

Tracker
● Channels count
● Physical size
● MIP sensitivity
● Low power
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The HGCAL Roadmap

● HGCAL adopted by CMS in 2015.
● First prototype modules produced and 

tested in 2016.
● TDR submitted in 2017 and approved 

in 2018.
● Mass construction due to start ~2021.
● Installation foreseen during LS3 

(2024-2025), for operation in Run4 
(starting in 2026).
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Scintillator Modules

● Plastic scintillator tiles arranged in r-φ grid.
● Tile surface varies from 4 to 32 cm2 (from 

small to large r).
● Readout is performed by on-tile SiPM.
● Tiles grouped in tileboards with max 

dimension of 45⨯41 cm2. Tileboard

SiPM
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TPG Monitoring

● In order to monitor the trigger quality we have foreseen a debug path.
● Dowscaled trigger data (1kHz???) are sent to the central DAQ where they are 

processed offline and compared to the actuall trigger decision. 
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CMS
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CMS

31



Radiation Levels in HGCAL Region 
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