The Case of Cloud Designing and Development

```
P. Fedchenkov(*), O. Lazo(*), A.Shevel(*,**), S. Khoruzhnikov(*), A. Shvetsov(**), O. Sadov(*), N. Samokhin(*), A. Oreshkin(**)
```

JINR 27th Symposium on Nuclear Electronics and Computing – NEC'2019

(Monte-Negro, 30 sent – 4 Oct)

^{*} ITMO University

^{**} PNPI of NRC «Kurchatov Institute»

Outline

- ➤ IT challenges & geographically distributed computing systems
- Project
- Results

Contemporary IT challenges in the World

- Geographically Distributed computing infrastructure
- Growing demands on data volume & computing in all areas of human activities
- Network security
- Reliable distributed storage
- Service reliability (fault tolerance)
- Scalability

Geographically distributed DC

- The number of DCs is growing each year thanks to growing of data volume.
- The specific demands for computing power is often exceeds abilities of one DC. It leads to various types of DC clustering.
- Make computing power more flexible: aggregation and share of geographically distributed computing resources.

Atlas flat badget vs Requirements

'THS06' stands for 'Terra HEP SPEC 06'

Fig. A8. Total energy of computing.

From https://www.theregister.co.uk/2016/07/25/semiconductor_industry_association_international_technology_roadmap_for_semiconductors/

6

Examples of aggregation of distributed computing power

- Computing Grid World LHC Computing Grid biggest Grid in the World.
- Computing Clouds
 - Amazon.com/ec2
 - Cloud.google.com
 - Azure.microsoft.com (number of users ~5*10**8)
- Cloud computing offers tremendous potential benefits in *agility*, *resiliency*, and *economy*.

Computing Clouds

- Computing Clouds
 - Total number of different cloud systems in the World ~ 10**3 and more (why so many?)
 - The old idea that everything would move to the public cloud never happened. Instead, the cloud market evolved to meet the needs of clients who want to maintain on-premises systems while tapping a multitude of cloud platforms and vendors."
 - Stephen Elliot, Program Vice President, IDC.

The problems

- How to avoid clients locked in specific cloud?
- How to make data in data storage safe for many years?
- How to guarantee security for data transfer between geographically distributed DCs?

Goals of this project

- The designing and development computing infrastructure, which permits to integrate the resources of Geographically Distributed DCs to form cloud Infrastructure as a Service (IaaS) and attempt to answer on questions from previous slide.
- Initial assumptions
 - DCs (groups of servers) are distributed on the planet or solar system.
 - DCs might be a group of bare metal servers or virtual servers in existing cloud systems.

The constituent elements of the solution

- Security
 - 'zero trust' approach (beginning from hardware level);
- Connectivity
 - SDN + NFV
- Flexibility
 - Program agents (microservices) architecture approach
- Scalability
 - horizontal scalability to meet changing demands
- Openness
 - FOSS components

Aims and Solutions

- Security of data transfer between DCs
 - Quantum Key Distribution (QKD) for data coding keys
- Data storage reliability
 - Stored Data is replicated on independent storage units (or DCs).
- Slow degradation with malfunction of hardware or software components.
 - Independent Program Agents in isolated operating environment.

Architectures for Integrated Management System (IMS)

- Infrastructure as Code (IaC)
- Semi-automatic deployment of IMS
- Monitoring of Engineering Infrastructure
- No lock to specific components like CEPH, Openstack, etc. It might be used another components.

Architecture technical solutions

- Data Storage: CEPH.com.
- VM management: Openstack.org.
- Monitoring of virtual and physical components: Zabbix.
- Visualization: Grafana/Kibana.
- Other components: Postgres, Rabbitmq, Nextcloud, Saltstack, GLPI, Ryu, ...
- Operating system (OS): NauLinux (clon RedHat).
- Own repository for all program components.
- Own semi-automatic procedure for system deployment.

Advantages

- IMS permits to build up hybrid clouds and to avoid cloud lock in.
- Data transfer between DCs with QKD.
- IMS is built upon operating isolated program agents in form of VM and/or containers.
 - Program Agents are implemented with 'added reliability' approach, i.e. HA or/and automatic restart in unexpected Agent abort.
- IMS horizontal scalability.

Status

- Testbed consisting of 3-x microDCs [10 servers (6-2-2) HPE DL380 Gen10 8LFF CTO
 - CPU: 2 x Intel Zeon Gold 6130;
 - Main memory: 128 GB
 - Disk storage 32 TB
 - 4 switches: HP FF 5700-32XGT-8XG-2QSFP+
- The distance between DCs are around 100 Km and more.
- The testbed is in use from March of 2019.

18

Experience

- IMS implementation suggests just base services: Virtual Machines, Virtual Storage, Virtual Data Transfer Links give freedom to use commercial public clouds, server co-location or own bare metal servers.
- Each program agent might be (and was) developed with different program language, libraries, by different developers with different development styles, etc.
- IMS permits to control 'dark' data centers.
- The project commissioning is running well.

Virtaul Objects of IMS

Experience-2

- Important component of project experience is creation of development team:
 - $\sim \frac{1}{2}$ students of ITMO University;
 - Developers from different organizations and cities;
 - Team meeting *each week*: 'face to face' or/and skype;
 - DevOp + gitlab sites + other collaborative tools;
 - $\sim \frac{1}{2}$ of our efforts was QKD procedure;
 - The development process took 2+ years.

Now is time for questions and comments

Thanks to: support from Ministry of Science and Higher Education of Russian Federation (program №218, contract № 03.G25.31.0229).

References

- Rebooting the IT Revolution: A Call to Action // September 2015 // http://www.src.org/newsroom/rebooting-the-it-revolution.pdf
- Trends in Data Centre Energy Consumption under the Eropean Code of Conduct for Data Centre Energy Efficiency // 2017 // www.mdpi.com/1996-1073/10/10/1470/pdf
- Key Facts and Figures CERN Data Centre // June 2018 // http://information-technology.web.cern.ch/sites/information-technology.web.cern.ch/files/CERNDat aCentre_KeyInformation_01June2018V1.pdf
- Bashir Mohammed, Sibusiso Moyo, Kabiru M Maiyama, Sulayman Kinteh, Al Noaman M.K.Al Shaidy and Mariam Kiran "Technical Report on Deploying a highly secured OpenStack cloud infrastructure using BradStack as a Case Study" Technical Report, Cloud Computing Modelling and Simulation Research Group School of Electrical Engineering and Computer Science, University of Bradford.UK, October 30, 2017.
- Security Guidance for Critical Areas of Focus in Cloud Computing v4.0
- Benjamin Satzger et al // Winds of Change: From Vendor Lock-In to the Meta Cloud.
- Gleim A.V., Egorov V.I., Nazarov Y.V., Smirnov S.V., Chistyakov V.V., Bannik O.I., Anisimov A.A., Kynev S.M., Ivanova A.E., Collins R.J., Kozlov S.A., Buller G.S. Secure polarization-independentsubcarrier quantum key distribution in optical fiber channel using BB84 protocol with a strong reference. Optics express, 2016, vol. 24, no. 3, pp. 2619–2633. doi: 10.1364/OE.24.002619