

NEC 30.09.2019 Budva Rogachevsky O. JINR

NICA site

09-16-2019 Mon 13:28:57

Facility components' - status 2019

Booster & collider

	Booster	Collider	
Dipoles	40	80+8	
Quadrupoles	24 * 2	78+12	
Corr. magnets	32 136		
Total	64	178	
	242		
	242		

	% delivered	
dipoles' yokes	54%	
quads' yokes	11%	
beam pipes	30%	
dipoles vacuum shells	100%	
	dipoles' yokes quads' yokes beam pipes dipoles vacuum shells	

NICA

MPD experiment

First stage

MPD Collaboration:

spokesperson – A. Kiesel WUT, Poland

10 Countries, 32 Institutes, 465 participants

Baku State University, NNRC, Azerbaijan; University of Plovdiv, Bulgaria; University Tecnica Federico Santa Maria, Valparaiso, Chili; Tsinghua University, Beijing, China; USTC, Hefei, China; Huizhou University, Huizhou, China; Institute of Nuclear and Applied Physics, CAS, Shanghai, China; Central China Normal University, China; SPSU – Dept. Shandong University, Shandong, China; North Ossetia State U June 15, 2019 V.Kekelidze, SQM-2019

IHEP, Beijing, China; University of South China, China; Palacky University, Olomouc, Czech Republic; NPI CAS, Rez, Czech Republic; Tbilisi State University, Tbilisi, Georgia; Tubingen University, Tubingen, Germany; Tel Aviv University, Tel Aviv, Israel; Joint Institute for Nuclear Research; IPT, Almaty, Kazakhstan; UNAM, Mexico City, Mexico; Institute of Applied Physics, Chisinev, Moldova; WUT, Warsaw, Poland; NCN, Otwock – Swierk, **Poland**; UW, Wroclaw, Poland; Jan Kochanowski University, Kielce, **Poland**; INR RAS, Moscow, Russia; MEPhl, Moscow, **Russia**; PNPI, Gatchina, Russia; INP MSU, Moscow, Russia; KI NRS, Moscow, Russia; SPSU - Dept. of NP, **Russia;** St. Petersburg, **Russia**; SPSU – Dept. of HEP, St. Petersburg, **Russia**; North Ossetia State University, Vladikavkaz, Russia; 27

MPD TPC

MPD TOF

MPD FHCal

MPD ECal

~ <u>43000</u> ECAL modules

Civil constraction

MPD physics

What is the QGP?

- ★ UrQMD Prog. Part. Nucl. Phys. 41 (1998) 225
- ★ **HIJING:** Phys. Rev. D 44 (1991) 3501
- **AMPT:** Phys. Rev. C 72 (2005) 064901
- **Hybrid UrQMD:** Phys. Rev. C 78 (2008) 044901
- ★ PHSD: Nucl. Phys. A 856 (2011) 162
- **VHLLE:** Comput. Phys. Commun. 185 (2014) 3016
- **DC-QGSM:** will be published soon
- * 3 Fluid Dynamics: Phys. Rev. C 73 (2006) 044904
- ★ Theseus: Phys. Rev. C 94 (2016) 044917
- **PHQMD**: arXiv:1907.03860
- ★ IHKM : Phys. Rev. C 93 (2016) 024902

Model predictions

Feasibility study for resonances in heavy-ion collisions

ρ(770) Κ*(892	2) ⁰ K*(892) ⁺	(1020)	Σ(1385) [±]	Λ(1520)	Ξ(1530)
$\frac{u\overline{u} + d\overline{d}}{\sqrt{2}} \qquad d\overline{s}$	us	SS	uus dds	uds	uss
Particle	Mass (MeV/c ²)	Width (MeV/ c^2)	Decay	BR	(%)
ρ ⁰	770	150	π+π	10	00
$K^{\star \pm}$	892	50.3	π±K\$	33	3.3
K*0	896	47.3	πK+	66	5.7
φ	1019	4.27	K+K-	48.9	
Σ^{\star_+}	1383	36	π*Λ	8	17
Σ^{\star}	1387	39.4	πΛ	87	
Λ(1520)	1520	15.7	K-p	22.5	
∃*0	1532	9.1	π+Ξ-	66.7	

Resonances decay

$$\begin{split} \mathrm{K}^*(892)^{\pm} &\to \pi^{\pm}\mathrm{K}_{\mathrm{s}} \ (\mathrm{K}_{\mathrm{s}} \to \pi^{+}\pi^{-}) \\ \Lambda(1520) \to \mathrm{p}\mathrm{K}^{-} \\ \phi(1020) \to \mathrm{K}^{+}\mathrm{K}^{-}, \ \mathrm{BR} = 48.9 \ \% \end{split}$$

Hyperon reconstruction and analysis at MPD

Midrapidity reduced curvature

BM@N

Next run (2020?)

Baryonic Matter at Nuclotron

11 Countries, 2**1** Institutions, **230** paricipants

spokesperson – M. Kapishin, JINR

University of Plovdiv, **Bulgaria;** Institute of High Energy Physics, **China;** Shanghai Institute of Nuclear and Applied Physics, CFS, **China;**

Tsinghua University, Beijing, China; Nuclear Physics Institute CAS, Czech Republic;

Tubingen University, Germany; Tel Aviv University, Israel;

Joint Institute for Nuclear Research;

Almaty Institute of Physics & Technology, **Kazakhstan;**

Institute of Applied Physics, Chisinev, Moldova;

Warsaw University of Technology, Poland;

University of Wroclaw, Wroclaw, Poland; Institute of Nuclear Research RAS. Moscow, **Russia**; Institute of Theoretical & Experimental Physics, NRC KI, Moscow, Russia; NRC Kurchatov Institute, Moscow, Russia: Moscow Engineer and Physics Institute, Russia; Skobeltsin Institute of Nuclear Physics, MSU, **Russia;** Massachusetts Institute of Technology, Cambridge, USA.

June 15, 2019

2**22 / 27**

A hyperon yield A signal width 2.4 – 3 MeV C+C: 4.6M triggers C+AI: 5.3M triggers C+Cu: 5.3M triggers

SPD

Collaboration, Letter of intent, CDR, detectors development are started

Computing for NICA

ingineering infrastructure

NICA data lake

BM@N Experiment Database

The Unified Database is designed as a

comprehensive relational data storage for offline data analysis in the fixed target

experiment BM@N of the NICA project. The

use of the BM@N database provides correct

multi-user access to actual information of the

BM@N Runs and Geometries

Detectors and Parameters

Parameter Values

experiment for data processing.

Simulation Files

Account

documentation

BM@N Runs 🗘

Distribution of runs by run periods (show information on all periods)

NICA

NICA session

- NICA project at JINR. Dr. ROGACHEVSKIY, Oleg
- BM@N experiment for studies of baryonic matter at the Nuclotron Mrs. MAKSYMCHUK, Anna
- Front-End Electronics for TPC/MPD detector of NICA project Mr. VERESCHAGIN, Stepan
- Trigger and beam monitoring system of BM@N and SRC experiments Dr. SERGEEV, Sergey
- ♦ Project of a fast interaction trigger for MPD experiment Dr. SERGEEV, Sergey
- ◆ Electronics of straw trackers in NA62, NA64 and SPD experiments, Mr. ENIK, Temur
- Tracking for BM@N GEM detector on the basis of graph neural network Mr. SHCHAVELEV, Egor
- LOOT: Novel end-to-end trainable convolutional neural network for particle track reconstruction Mr. GONCHAROV, Pavel
- Hit finder and track reconstruction algorithms in the Multi-Wire Proportional Chambers of BM@N experiment, Prof. NEMNYUGIN, Sergei
- Development and Integration of the Electronic Logbook for the BM@N experiment at NICA Dr. GERTSENBERGER, Konstantin