Sl

[0

Improving Resources Usage In
HPC Clouds

|. Petrov -2, A. Chupakhin!-?, V. Antonenko 1 ¢,
R. Smeliansky 1. ¢

1 Lomonosov Moscow State University

E-mail: 2ipetrov@cs.msu.ru, P andrewchup@Ivk.cs.msu.su, ° anvial@Ivk.cs.msu.su, 9 smel@cs.msu.ru

This work is supported by Russian Ministry of Science and Higher Education, grant #05.613.21.0088, unique ID RFMEFI61318X0088

NEC’2019

mailto:ipetrov@cs.msu.ru
mailto:anvial@lvk.cs.msu.su
mailto:anvial@lvk.cs.msu.su
mailto:smel@cs.msu.ru

Problem Description

Current situation with HPC resources:

e Low User Experience for supercomputer users: problem with
big (wait_time + execution_time)

e Supercomputer scheduler considers computing unit (not

separated cores)
e Resources fragmentation => resources underutilization

wait_time execution_time

L
Job (W
I | | Ti
Submit time Start time Finish time ime

Possible solution

Use additional resources from the cloud

Potential ability for jobs execution

@

Decrease length of job’s queue

Decrease wait time for jobs

o

Improve User Experience

¥
'“",NI[II\II|
S
=

HPC or Cloud

D

wﬂ%ﬂdﬂl)i

Our goal -> reduce (wait_time + execution_time)

Jobs Input
7L_ﬁimsnnu Queue—i

Jobs Classification

Y h

r—‘
Reduce

Queus
Length

hJ

Scheduler
e

Scheduler Scheduler

HPC —
o

Our Hypothesis

“MPI programs that don’t require a lot of computing resources
can effectively share the same set of resources”

Details:
* We considered MPI programs in the cloud
* We want find MPI programs don’t require a lot of computational
resources:
 According to MPI program nature
e MPI programs wait for data transmission due to the slow network

¢ gL AL
Qﬁlﬂyﬂ%ﬂdﬂl 1l
iy

Our Hypothesis

=

“MPI programs that do not require a lot of computing resources
can effectively share the same set of resources”

HPC
Jobl wiait_time_1 execution_time_1
Jobz e
| | | >
| | ! Time
L J |
Al L‘TJ-

wiait_time_ 2 executinn_tinie_z
i
Cloud

Jobl wait_time executiun_time_lrl,“a:
L= i
1

TN 4 =

) Time

execution_time_2

MPI programs

NASA Parallel benchmark:
* (G - Conjugate Gradient
 EP - Embarrassingly Parallel
* FT - Discrete 3D fast Fourier Transform
* |S-Integer Sort
LU - Lower-Upper Gauss-Seidel solver
NPB has different sizes. We check S, A, B, C, D

Experimental stand

"‘%ﬂ@ﬂk%l Hilve

7 servers, 64 virtual machines, optical fibers between servers

R I L I
ensl1fo enslfo headinl
enp3s0f ensam ensafl
HEAD
enpl3s0f0 anp13s0f1 enplasifl
enp9sifl ensafl enpIs0fo

‘ 5247 ‘ ‘ sSMZ ‘

5761 ‘

Measuring MPI program parameters

 CPU
e Perf utility
* Network
» /[sys/class/net/<iface_name>/statistics/{rx_packets,
tx_packets,rx_bytes, tx_bytes}
 Bandwidth, delay
e traffic control utility

CPU usage

CPU usage

Experlment NPB. CPU

100%

80% -

60% -

40% -

20% A

—e— 100 Mbit/s
—e— 1000 Mbit/s
—e— 10000 Mbit/s

0%

2 4 8 16
CPU number

ft

32 64

100%

80% -

60% -

40% A

20% A

0%

—e— 100 Mbit/s
—o— 1000 Mbit/s
—e— 10000 Mbit/s

2 4 8 16 32 64
CPU number

CPU usage

CPU usage

ep

100%

80% A

60% A

40% A

20% A

—e— 100 Mbit/s
—e— 1000 Mbit/s
—e— 10000 Mbit/s

0%

2 4 8 16 32 64
CPU number

is

100%

80% -

60% -

40% A

20% A

0%

b_’\\

—e— 100 Mbit/s
—o— 1000 Mbit/s
—e— 10000 Mbit/s

2 4 8 16 32 64
CPU number

CPU usage

100%

80% -

60% -

40% A

20% A

—e— 100 Mbit/s
—e— 1000 Mbit/s
—e— 10000 Mbit/s

0%

2 4 8 16 32
CPU number

64

Queue metrics

Queue metrics

Experiment. NPB. Sharing

cg[96, >1: 0, <=1: 96] ~

1.4
—e— 100 Mbit/s

—o— 1000 Mbit/s
—e— 10000 Mbit/s

1.3 A
1.2 1

1.1 A

1.0
0.9 A
0.8 A

0.7 A

0.6:\. | . | .

2 4 8 16 32 64
CPU number

ft [96, >1: 16, <=1: 80]

1.4
1.3 A
1.2 1

1.1 A

0.9 \\

0.8 1 —e— 100 Mbit/s

—e— 1000 Mbit/s
—e— 10000 Mbit/s

0.7 1

0.6 — T T T T T
2 4 8 16 32 64

CPU number

Queue metrics

Queue metrics

ep [96, =1: 76, <=1: 20]

lu[96, >1: 16, <=1: 80]

1.4 1.4
—e— 100 Mbit/s —e— 100 Mbit/s
1.3 1 —s— 1000 Mbit/s 1.34 —e— 1000 Mbit/s
12 —e— 10000 Mbit/s | ;| —e— 10000 Mbit/s
-
1.1 _— 1.1
1.0 4 € 1.0
g
0.9 - 2 0.9
o
0.8 - 0.8
0.7 A 0.7 1
0.6 T T T T T T 0.6
2 4 8 16 32 64 2 4 8 16 32 64
CPU number CPU number
14 is[96, >1: 20, <=1: 76]
' —e— 100 Mbit/s Tlure + Tzure
131 —— 1000 Mbis | (eye_metric = 7 ’
1. —e— 10000 Mbit/s maX(Tl T2))
sharing! " sharing

0.6

16
CPU number

32 64

Queue metric is
speed-up coefficient

I
i (7

it

Conclusion and further works

Conclusions:
* Experiments have shown, that you can do resources sharing in the

cloud with slow network, but not for all programs. Our next goal is
to write a scheduler that can do this.
 We need suitable criteria for evaluation of sharing opportunity
Future research:
 Develop scheduler for the cloud which can share resources
« MPI program execution time prediction
* Extrapolation time for the same job
 Time prediction using supercomputer log file

