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Problem Description

Current situation with HPC resources:

e Low User Experience for supercomputer users: problem with
big (wait_time + execution_time)

e Supercomputer scheduler considers computing unit (not

separated cores)
e Resources fragmentation => resources underutilization
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Possible solution

Use additional resources from the cloud

Potential ability for jobs execution
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Decrease length of job’s queue

Decrease wait time for jobs
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Improve User Experience
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HPC or Cloud
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Our goal -> reduce (wait_time + execution_time)
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Our Hypothesis

“MPI programs that don’t require a lot of computing resources
can effectively share the same set of resources”

Details:
* We considered MPI programs in the cloud
*  We want find MPI programs don’t require a lot of computational
resources:
 According to MPI program nature
e MPI programs wait for data transmission due to the slow network
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Our Hypothesis
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“MPI programs that do not require a lot of computing resources
can effectively share the same set of resources”

HPC
Jobl wiait_time_1 execution_time_1
Jobz e
| | | >
| | ! Time
L J |
Al L‘TJ-

wiait_time_ 2 executinn_tinie_z
i
Cloud

Jobl  wait_time executiun_time_lrl,“a:
L= i
1

TN 4 =

) Time

execution_time_2



MPI programs

NASA Parallel benchmark:
* (G - Conjugate Gradient
 EP - Embarrassingly Parallel
* FT - Discrete 3D fast Fourier Transform
* |S-Integer Sort
LU - Lower-Upper Gauss-Seidel solver
NPB has different sizes. We check S, A, B, C, D




Experimental stand
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7 servers, 64 virtual machines, optical fibers between servers
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Measuring MPI program parameters

 CPU
e Perf utility
* Network
» /[sys/class/net/<iface_name>/statistics/{rx_packets,
tx_packets,rx_bytes, tx_bytes}
 Bandwidth, delay
e traffic control utility



CPU usage
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Queue metrics

Queue metrics

Experiment. NPB. Sharing
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Conclusion and further works

Conclusions:
* Experiments have shown, that you can do resources sharing in the

cloud with slow network, but not for all programs. Our next goal is
to write a scheduler that can do this.
 We need suitable criteria for evaluation of sharing opportunity
Future research:
 Develop scheduler for the cloud which can share resources
« MPI program execution time prediction
* Extrapolation time for the same job
 Time prediction using supercomputer log file



