NEC'2019
Accelerating personal computations with

HTCondor: large number events generation with
GENIE

2 23,4

Kostantin Kuzmin
2

Nikita Balashov !  Igor Kakorin
Vadim Naumov

1Laboratory of Information Technologies, Joint Institute for Nuclear Research,
RU-141980 Dubna, Russia

2Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear
Research, RU-141980 Dubna, Russia

3Institute for Theoretical and Experimental Physics, RU-117259 Moscow, Russia

4Kurchatov Institute, RU-123182 Moscow, Russia

01th of October 2019



What is GENIE (http://www.genie-mc.org/)

IJ
€4Ue’ Event Generator & Global Analysis of Neutrino Scattering Data

Home

Mission statement
GENIE collaboration
Palicy documents
Copyright notices
Citing GENIE
Logos

Public releases

Global fits & physics tunes
Naming conventions
Associated data releases

GENIE is an international collaboration of scientists that plays the leading role in the
development of comprehensive physics models for the simulation of neutrino interactions,
and performs a highly-developed global analysis of neutrino scattering data.

The GENIE collaboration maintains a popular suite of software products (including the
Generator, Comparisons, Tuning, and Reweight products) for the experimental neutrino
community.

The well-known Generator implements a modern framework for Monte Carlo event generators
and includes state-of-the-art physics modules. The GENIE physics model is universal and
comprehensive: It handles all neutrinos and targets, and all processes relevant from MeV to
PeV energy scales. The Generator includes several tools (flux drivers, detector geometry
navigation drivers, and specialized event generation apps) to simulate complex experimental
setups in full detail. The GENIE Generator is used by nearly all modern neutrino

User forum
Project incubator

Physics & user manual
Document database fi

Slack workspace i

User mailing list
Developer mailing list

GitHub organization page

Get started
GENIE course

News

and its predictions serve as standard reference points for the neutrino community.

The Comparisons product includes very extensive curated archives of neutrino, charged-
lepton and hadron scattering data, as well as highly-developed software to produce a
comprehensive set of data/MC comparisons_ It includes embedded interfaces to the
Professor tuning tool which "reduces the exponentially expensive process of brute-force tuning
to a scaling closer to a power law in the number of parameters and allows for massive
parallelisation”. The Comparisons product plays a key role in comprehensive model
characterization in GENIE, it underpins the GENIE global analysis, and it enabled the production
of several new tunes.

UNIVERSAL NEUTRINO GENERATOR

The Tuning product implements the powerfull new GENIE global analysis of neutrino
scattering data. The GENIE global analysis produces physics tunes which are fully & GLOBAL FIT
integrated in the Generator product

Finally, the Reweight product includes a selection of tools to propagate model uncertainties and to support generator-related analysis tasks. The
reweighting procedure has inherent limitations. Important modelling systematics are not reweightable in principle and they have no corresponding weight
calculator in the Reweight product. Indeed, the GENIE tuning procedure itself makes no use of the Reweight product but it relies on response functions
constructed from brute-force parameter scans made with the aid of the Professor tool. Currently, the Reweight product it does not provide the full
systematic error for any GENIE tune. However, we have medium-term plans to overhaul this product and use it for public release of the detailed
Professor/YODA response functions constructed from our brute-force systematic parameter scans, as well as to release all covariance matrices from the
GENIE global fis of neutrino scattering data. The upgraded Reweight product will support all public GENIE physics tunes!


http://www.genie-mc.org/

Why generation of large number of events is important?

The comparison of experimental data and GENIE predictions generated
with high/low statistics. The points with bars shows MINERVA data
(P-scattering on hydrocarbon) with systematics errors. The histograms
shows predictions of the super-scaling model with relativistic effective
mass (Phys.Rev. D97 (2018) no.11, 116006) calculated with GENIE.

250
CCQE SuSAM*
} } xz/ndfz 5.4989 (low statistics)

2
200 X mdf =2:0375-(high-statisties)

150

100

Cross Section (10A-41 cmA2)

T
0 10 20 30 40

50 60
Linear Bin



Why generation of large number of events is important?

Number of events for high statistics histogram

Number of events for low statistics histogram

~ b and difference between

histograms is barely visible by eye, but y?-s differ significantly.

250
CCQE
200+

150

100

Cross Section (10A-41 cmA2)

SuSAM*
2
X /ndf =5.4989 (low statistics)

2
X /mdt =2:0375-(high-statistics)

20 30 40
Linear Bin

60



Why generation of large number of events is important?

Why there is such a difference become clear from this representation of
the same data. Here we renormalized histograms and divided them by
data. The represents the relative systematics errors.

> SuSAM* after renormalization
CCQE with low and high statistics
on background of data error band

error band

MC/Data

Linear Bin



Why generation of large number of events is important?

The dips on the histogram are due to the cross section for the
corresponding bins are small, but the weight of an event in these bins are
large: if the number of generated events is small there is almost no
chance for an event to get in dips, while data contains such events. That
is why the x? for low statistic histogram is so large.

SuSAM* after renormalization
CCQE with low and high statistics
on background of data error band

error band

MC/Data

60



Times of events generation

It takes about 576/115 CPU hours to generate
high/low statistics histogram. There is a need to
generate tens of such histogram to compare
theoretical prediction with only one experiment. It
takes not less than 10 days to generate all
histograms with sufficient statistics at a workstation
with 24 CPU (if there are no errors in the
calculation), it is unreasonably long. If one use
HTCondor with 576 CPU then it will take only
10 hours.



Combine HTCondor with a PC

» A guaranteed maximum execution time (limited by a
user's personal machine)

» Possible decrease of the execution time depending on the
availability of the batch-cluster resources

» A unified submission system - no need to start the
workload on a personal computer differently than on the
cluster

» Major drawback: more complicated software distribution

Batch mode

HTCondor Opportunistic
Pool Accelerator
i Uses PC as {Worker-node
User Guaranteed

————— PC
Interactive Access resource



Software distribution

» Users want their software be ready to use as soon as
possible after being built

» PC operating system most likely to differ from the
cluster’s

» We came up with using two systems:

» NFS share for some data and software that changes often
» CVMFS for common software (slow release cycle)

Data Custom Software | Common Software |




Test Environment

>

v

User

Uses PC as a Worker-node
Y ( A
| Data |

A shared SSL certificate is used to authenticate user node
against the central manager to join the HT Condor cluster

The PC is a cloud virtual machine running Debian 8
The whole HT Condor cluster runs Scientific Linux 6

NFS and CVMFS are mounted on all the worker-nodes
and the user’s machine

Opportunistic
Accelerator

H Common Software

Batch mode - HTCondor
Pool

A

- PC
Interactive Access

Guaranteed Custom Software
resource



Going more exotic: distributed compilation

» Building the software can also be a resource-intensive
operation and can be distributed (at least some stages of
it)

» There are several compilers that can do it, the most
popular are:

» DistCC
P |cecream
» DMUCS

» Can we leverage HT Condor?

Ci Linking

Prepr

Remote Node

Personal Node

Remote Node

Remote Node




Software builds scalability

GENIE build time

B j=CPU_N+2RAM=6GB [ j=40 RAM=8GB
gop 7467

600

400

Time, seconds.

257817
234187
21789 200.802 193.896 193.097 187.004
200

#of CPUs

ROOT build time
M j=CPU_N+2,RAM=8GB
3000

2000

1000

Time, seconds

#CPUs



DistCC with HT Condor

» There's no easy way to run multiple DistCC daemons on a
single node, so we need to submit multicore jobs

» Limit DistCC daemons to the number of slots acquired

» Its good to know the number of available CPUs
beforehand to chose the optimal “-j" for the make

» When compiling is finished the DistCC daemons need to
be stopped manually

» Ideally, client environment should match the cluster
environment

» A bunch of wrapper scripts can automate most of these
tasks, but...

» All this makes it a bit too complicated for the ordinary
user to make use of it



Possible DistCC-HT Condor workflow

» Check the number of free HT Condor nodes and
the number of slots/cores available on each of
the node and make a list

» Submit multiple times jobs of different slot sizes

» Wait some “reasonable” time for the DistCC
daemons to start

» Make the ip-address/number_of slots list and
put it into the env of the DistCC client

» Start the build

» When the build has finished, remove all of the
condor jobs



TODOs

» Consider other options for software distribution:

» Substitute NFS with EOS

» Fine-tune CVMFS for higher publication rates

» Use Docker Universe

» Establish the CA to issue certificates on per-node basis

» Facilitating software builds with HT Condor feels
to complex normal users, but looks promising for
the automated system to facilitate Continuous
Integration

Thanks!



	GENIE
	Why generation of large number of events is important?
	Times of events generation
	Combine HTCondor with a PC
	Software distribution
	Test Environment
	Going more exotic: distributed compilation
	Software builds scalability
	DistCC with HTCondor
	Possible DistCC-HTCondor workflow
	TODOs

