
1/15

NEC’2019
Accelerating personal computations with

HTCondor: large number events generation with
GENIE

Nikita Balashov 1 Igor Kakorin 2 Kostantin Kuzmin 2,3,4

Vadim Naumov 2

1Laboratory of Information Technologies, Joint Institute for Nuclear Research,
RU-141980 Dubna, Russia

2Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear
Research, RU-141980 Dubna, Russia

3Institute for Theoretical and Experimental Physics, RU-117259 Moscow, Russia

4Kurchatov Institute, RU-123182 Moscow, Russia

01th of October 2019



2/15

What is GENIE (http://www.genie-mc.org/)

http://www.genie-mc.org/


3/15

Why generation of large number of events is important?

The comparison of experimental data and GENIE predictions generated
with high/low statistics. The points with bars shows MINERνA data
(ν̄µ-scattering on hydrocarbon) with systematics errors. The histograms
shows predictions of the super-scaling model with relativistic effective
mass (Phys.Rev. D97 (2018) no.11, 116006) calculated with GENIE.



4/15

Why generation of large number of events is important?

Number of events for high statistics histogram
Number of events for low statistics histogram ≈ 5 and difference between

histograms is barely visible by eye, but χ2-s differ significantly.



5/15

Why generation of large number of events is important?

Why there is such a difference become clear from this representation of
the same data. Here we renormalized histograms and divided them by
data. The error band represents the relative systematics errors.



6/15

Why generation of large number of events is important?

The dips on the histogram are due to the cross section for the
corresponding bins are small, but the weight of an event in these bins are
large: if the number of generated events is small there is almost no
chance for an event to get in dips, while data contains such events. That
is why the χ2 for low statistic histogram is so large.



7/15

Times of events generation

It takes about 576/115 CPU hours to generate
high/low statistics histogram. There is a need to
generate tens of such histogram to compare
theoretical prediction with only one experiment. It
takes not less than 10 days to generate all
histograms with sufficient statistics at a workstation
with 24 CPU (if there are no errors in the
calculation), it is unreasonably long. If one use
HTCondor with 576 CPU then it will take only
10 hours.



8/15

Combine HTCondor with a PC

I A guaranteed maximum execution time (limited by a
user’s personal machine)

I Possible decrease of the execution time depending on the
availability of the batch-cluster resources

I A unified submission system - no need to start the
workload on a personal computer differently than on the
cluster

I Major drawback: more complicated software distribution



9/15

Software distribution

I Users want their software be ready to use as soon as
possible after being built

I PC operating system most likely to differ from the
cluster’s

I We came up with using two systems:
I NFS share for some data and software that changes often
I CVMFS for common software (slow release cycle)



10/15

Test Environment

I A shared SSL certificate is used to authenticate user node
against the central manager to join the HTCondor cluster

I The PC is a cloud virtual machine running Debian 8

I The whole HTCondor cluster runs Scientific Linux 6

I NFS and CVMFS are mounted on all the worker-nodes
and the user’s machine



11/15

Going more exotic: distributed compilation

I Building the software can also be a resource-intensive
operation and can be distributed (at least some stages of
it)

I There are several compilers that can do it, the most
popular are:
I DistCC
I Icecream
I DMUCS

I Can we leverage HTCondor?



12/15

Software builds scalability



13/15

DistCC with HTCondor

I There’s no easy way to run multiple DistCC daemons on a
single node, so we need to submit multicore jobs

I Limit DistCC daemons to the number of slots acquired

I Its good to know the number of available CPUs
beforehand to chose the optimal “-j” for the make

I When compiling is finished the DistCC daemons need to
be stopped manually

I Ideally, client environment should match the cluster
environment

I A bunch of wrapper scripts can automate most of these
tasks, but...

I All this makes it a bit too complicated for the ordinary
user to make use of it



14/15

Possible DistCC-HTCondor workflow

I Check the number of free HTCondor nodes and
the number of slots/cores available on each of
the node and make a list

I Submit multiple times jobs of different slot sizes

I Wait some “reasonable” time for the DistCC
daemons to start

I Make the ip-address/number of slots list and
put it into the env of the DistCC client

I Start the build

I When the build has finished, remove all of the
condor jobs



15/15

TODOs

I Consider other options for software distribution:
I Substitute NFS with EOS
I Fine-tune CVMFS for higher publication rates
I Use Docker Universe
I Establish the CA to issue certificates on per-node basis

I Facilitating software builds with HTCondor feels
to complex normal users, but looks promising for
the automated system to facilitate Continuous
Integration

Thanks!


	GENIE
	Why generation of large number of events is important?
	Times of events generation
	Combine HTCondor with a PC
	Software distribution
	Test Environment
	Going more exotic: distributed compilation
	Software builds scalability
	DistCC with HTCondor
	Possible DistCC-HTCondor workflow
	TODOs

