
NEC 2019

Blocking strategies to accelerate
record matching for Big Data
integration

Ivan Kadochnikov - kadivas@jinr.ru
Vladimir Papoyan - vlpapoyan@jinr.ru

NEC 2019

Record matching

2

id Name Address ….

123456789 Example LTD 1 Sample road ... ….

number Legal name Country ….

98765-432 Example, limited UK ….

NEC 2019

String distance (edit distance)

Levenshtein(
‘Example limited’,

 ‘Exams unlimited’
) = 5

3

NEC 2019

Attribute-based blocking

4

RU

GB

RU

GB

….

NEC 2019

● Needs robust categorical attributes shared between datasets

Attribute-based blocking

5

RU

GB

RUS

UK

NEC 2019

Nearest-neighbour search with LSH

● Fast approximation of string distance

6

“Example”

“Exemples”

NEC 2019

TF/IDF to transform string into vectors

● Term frequency × inverse document frequency

● Document = short string (name)

● Term = n-gram of tokens

● Tokens = individual characters

● Sparse -dimensional vector result

7

NEC 2019

Location-sensitive hashing

● Project many-dimensional vector into hash buckets

● For a specific metric, “close” vectors are likely to have the same hash

● “Far” vectors are not likely to have the same hash

● OR-amplification

● AND-amplification

8

NEC 2019

NNS in vector space with LSH

● Project full latent vector space into hash buckets

● By definition, close vectors probably fall in the same bucket

● Compute pairwise distance in full vector space inside each bucket

9

NEC 2019

Euclidean distance random-projection LSH

● Random projection direction

● Project every vector onto d

10

NEC 2019

Spark-ml implementation

● Part of Spark

● Spark DataFrame API

● Euclidean or Jaccard distance (no cosine distance hash)

● OR-amplification of NNS only

● Unstable when buckets contain too many records

11

NEC 2019

Scalable Approximate Nearest Neighbor Search:

● Spark library using RDD Spark API

● Open-sourced in Feb 2017, needs a fix to work

● Developed at LinkedIn

● Euclidean, Jaccard and cosine distance hashes.

● Both And- and Or-amplification of hashes

● Drops records from overfull buckets

ScANNS implementation

12

NEC 2019

Linking CompaniesHouse and GLEIF datasets

● 4206355 records in CompaniesHouse, 1208110 records in GLEIF

● Record matching on company name

● Euclidean distance < 11.0, character triples

● One Spark node on 16 cores and 18GB of memory

● 0.01 sample from CH, 0.1 sample from GLEIF for the graphs

13

NEC 2019

OR-amplification (matches vs n_hashes)

14

NEC 2019

Computing time vs n_hashes

15

t, seconds

NEC 2019

Results

● Implemented LSH-based blocking method for record matching in Spark

● Demonstrated effectiveness of using and-amplification

● Implemented blocking with Scanns LSH

● To do:
○ Use larger cluster
○ Test on a labeled record-matching dataset
○ Measure Scanns performance

16

NEC 2019

Thank you!

● This work is supported by the Russian Science Foundation under grant 19-71-30008

17

