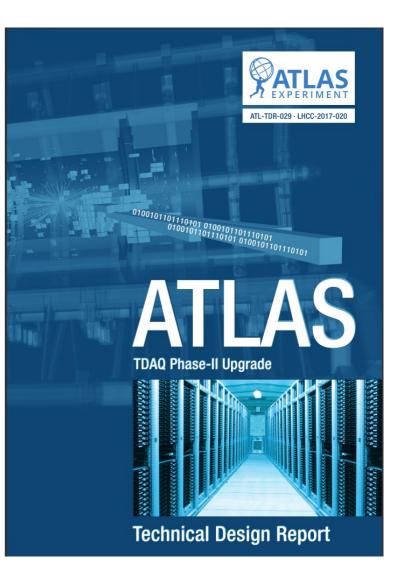
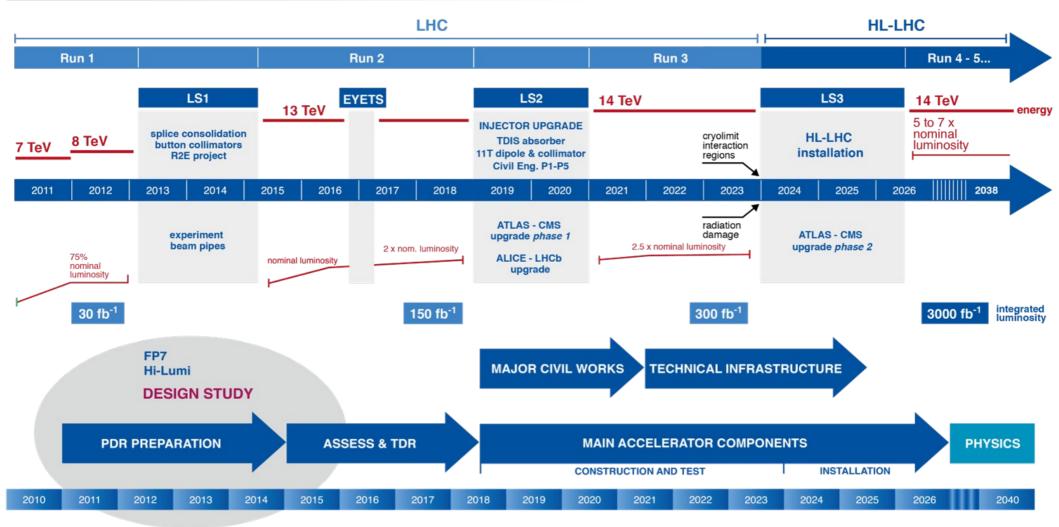


ATLAS Trigger and Data Acquisition Upgrades for the High Luminosity LHC

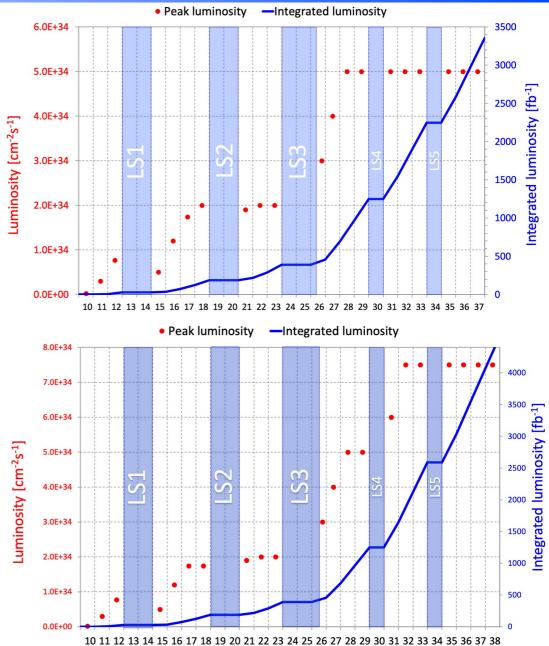

W.Vandelli CERN Experimental Physics Department/ADT

> on behalf of ATLAS Collaboration

- HL-LHC Overview
- Physics Motivations & Challenges
- ATLAS Phase-II TDAQ Architecture
- TDAQ Sub-Systems
- Outlook


ATLAS Collaboration Technical Design Report for the Phase-II Upgrade of the ATLAS TDAQ System https://cds.cern.ch/record/2285584

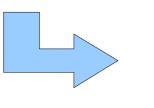
LHC / HL-LHC Plan



ATLAS HL-LHC Operation Point

CERN

- HL-LHC programme aims at a total integrated luminosity of at least 3000 fb⁻¹
 - ten-fold increase wrt Run 1/2/3 aggregate
- Corresponding increase in peak instantaneous luminosity
 - \$\mathcal{L}^{-5.10^{34}}\$ cm⁻²s⁻¹ (ultimate
 7.5.10³⁴ cm⁻²s⁻¹)
 - achieved mainly via pileup <μ>: 140 (ultimate 200)
- For reference Run 3 operation point:
 - ℒ~2·10³⁴ cm⁻²s⁻¹ <μ>~50


https://lhc-commissioning.web.cern.ch/lhc-commissioning/schedule/HL-LHC-plots.htm Year

October 1st 2019 W.Vandelli - XXVII Symposium on Nuclear Electronics & Computing

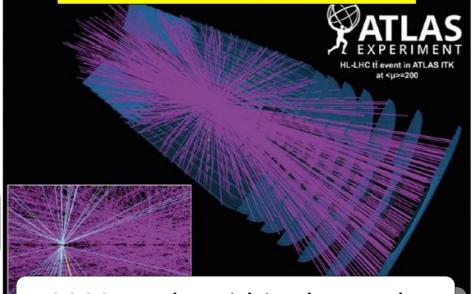
- The challenging and broad HL-LHC programme requires trigger thresholds comparable with the current ones, e.g.:
 - electroweak scale requires low p_{τ} leptons
 - searches for new physics with low Δm
 - HH measurements requires low p_T jets /b-jets
- At fixed threshold, trigger rates scale with peak luminosity
 - worsened by pileup environment

Major increase in readout and recording rates

Trigger Selection offline threshold (GeV)	Run 1	Run 2	HL-LHC		Run 3	Phase II
Isolated single e	25	27	22			
Isolated single μ	25	27	20	Readout		
$\text{Di-}\gamma$	25, 25	25, 25	25, 25	rate (MHz)	0.1	1 (4)
$\mathrm{Di} ext{-} au$	40, 30	40, 30	40, 30			
Four-jet w/ b-jets	45	45	65	Decording		
H_T	700	700	375	Recording	1.5	10
MET	150	200	200	rate (kHz)		

October 1st 2019 W.Vandelli - XXVII Symposium on Nuclear Electronics & Computing

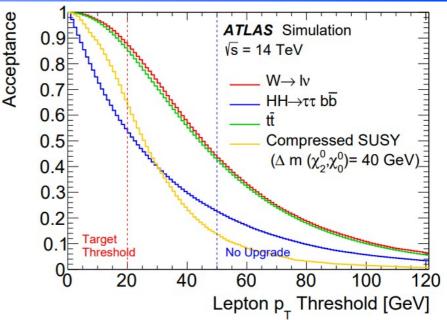
ATLAS ATLAS Phase-II Upgrade

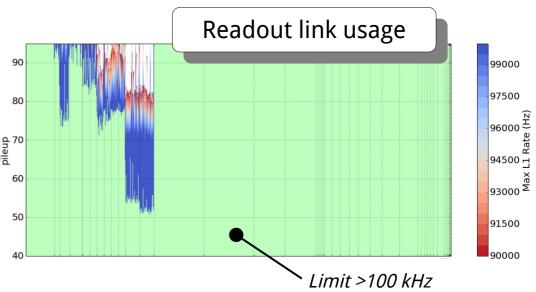


- both for readout and trigger
- complete replacement of inner detector → ITk

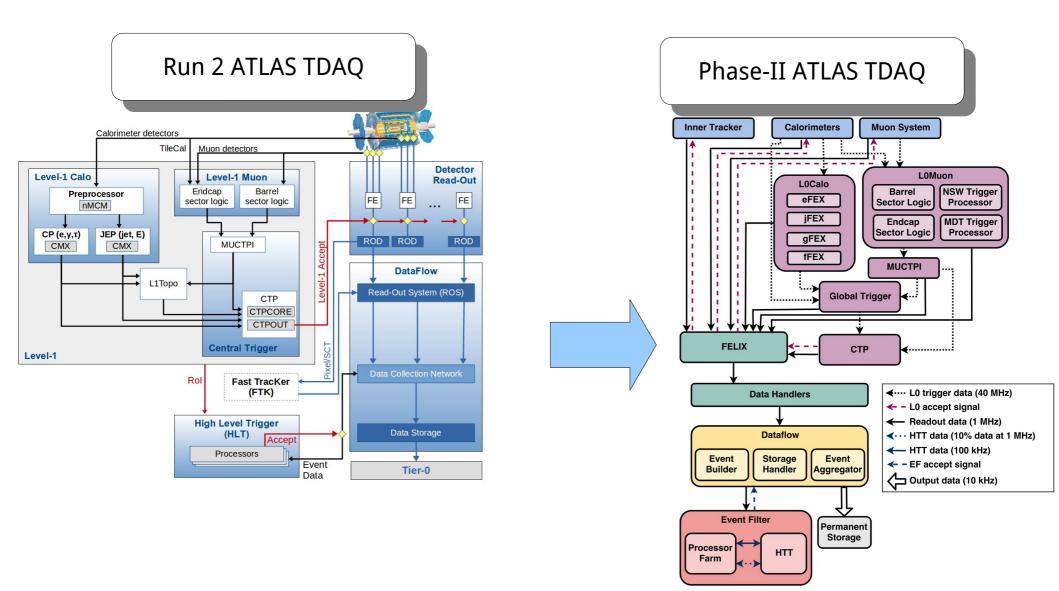
Larger event size

- Higher readout rate needs overhaul of detector front-end electronics
 - occasion to increase first level-trigger latency
 - currently limited by on-detector buffer depths
 - adopt unified readout link technology
 - GBT/Versatile

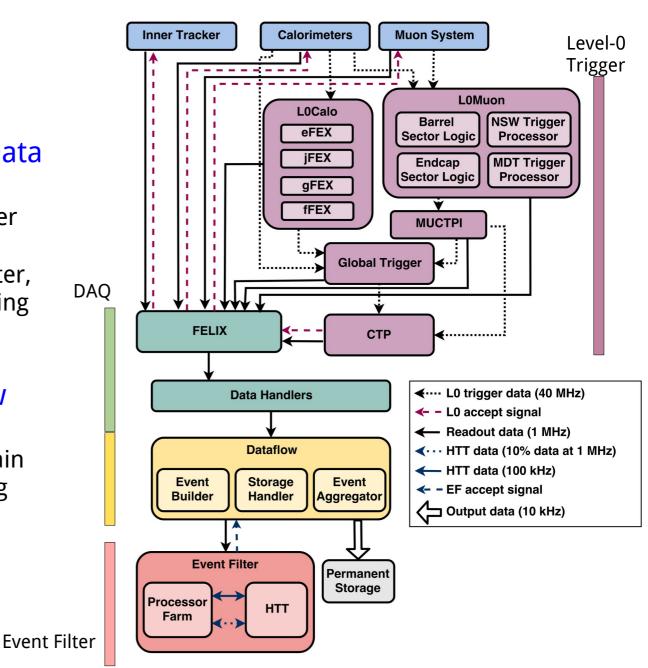

12000 tracks within the tracker


	Run 3	Phase II
First-level trigger latency (μs)	2.5	10
Event size (MB)	2.5	>5

ATLAS TDAQ Challenges and Design Criteria

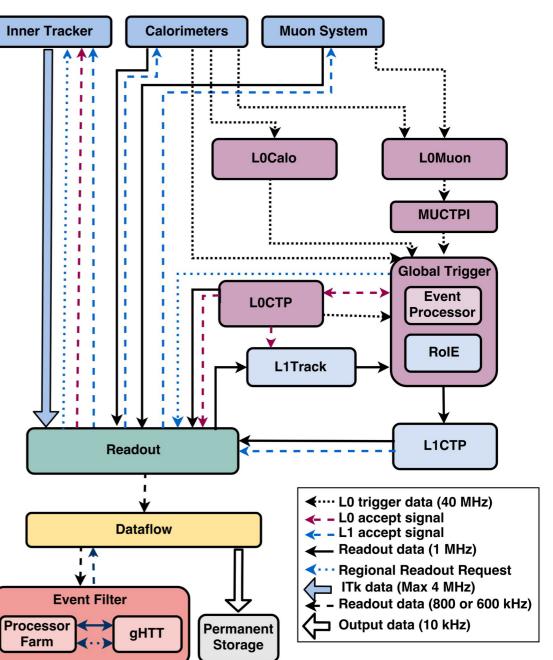

- ATLAS TDAQ requires a major overhaul to cope with the Phase-II conditions and requirements
- Existing system limited in every aspect
 - trigger and timing distribution
 - capabilities of the first-level trigger
 - readout and dataflow bandwidth
- Phase-II TDAQ design is not a revolution
 - scale implementation to Phase-II requirements
 - learn lessons from previous runs
 - take advantage of last 10+ years of technology evolution
 - apply solutions specific to the HL-LHC challenges

ATLAS Phase-II TDAQ Architecture



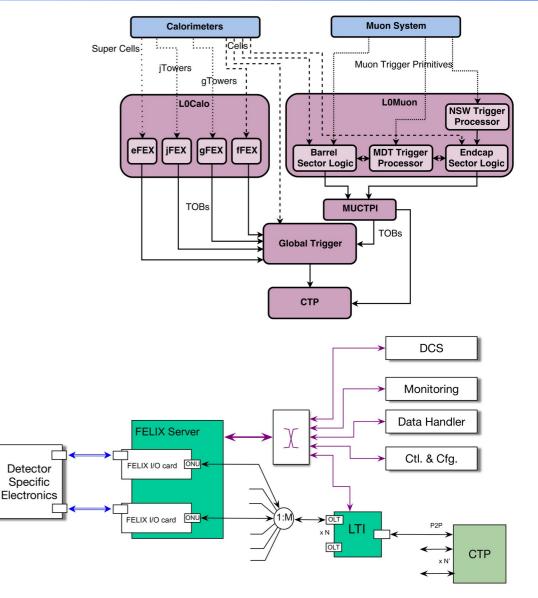
ATLAS Phase-II TDAQ Architecture

• Two-Level Trigger and Data Acquisition System


- hardware-based L0 trigger system
- software-based Event Filter, aided by dedicated tracking accelerator
- Storage-based data-flow infrastructure
 - decouple real-time domain from software processing
 - enable advanced data processing strategies

ATLAS Phase-II TDAQ Evolution Architecture

- Evolution path to a two-level hardware trigger included in the design
 - L0 4 MHz
 - L1 1 MHz
 - Event Filter 10 kHz
- Possible transition from baseline to evolution driven by physics requirements
 - hadronic trigger rates
 - occupancy of inner layers of ITk
- Avoid the baseline TDAQ implementation restricting the trigger menu at the ultimate HL-LHC operating conditions
- Level-1 Trigger combines L0 objects with track information from a dedicated subsystem to discriminate against pileup in the calorimeter

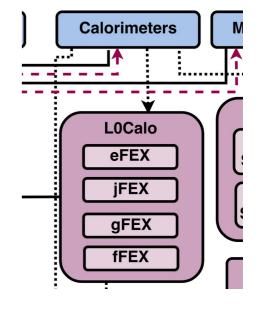


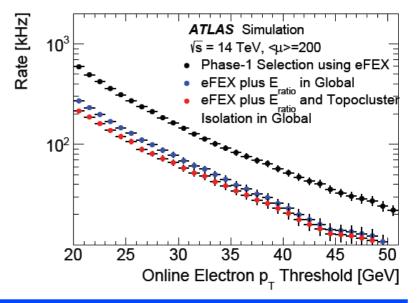
EXPERIMENT Level-0 Trigger & TTC

• Operates at 40 MHz applying selection criteria based on

- calorimeter activity
- muon detection
- topological information
- Central Trigger Processor includes
 - interface to the LHC timing
 - prescaling and preventive deadtime functionalities
- Completely new trigger & timing distribution system
 - options based on passive optical splitters and point-to-point links

 $\longrightarrow Front-End links \\ \longrightarrow PON or P2P links$

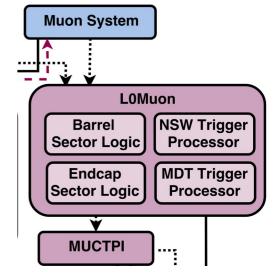

Multi-Gigabit network

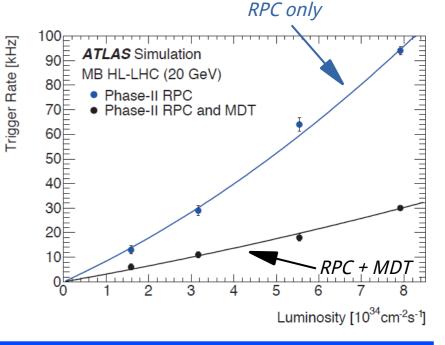

Largely inherited from the ongoing Phase-I upgrade

ATLAS Level-0 Calo

- Exploits reduced-granularity data from EM and hadronic calorimeters. Dedicated collections of boards implement:
 - electron and photon identification (eFEX)
 - single jet identification (jFEX)
 - large-R triggers and global quantities (gFEX)
 - forward electromagnetic jets identification (fFEX)

Subsystem	Trigger Object	Approximate Granularity	Coverage η
eFEX	e/γ,τ	Super Cells (10 in 0.1×0.1)	< 2.5
jFEX	τ , jet, $E_{\rm T}^{\rm miss}$	0.1 imes 0.1	< 2.5
jFEX	τ , jet, $E_{\rm T}^{\rm miss}$	0.2×0.2	2.5 - 3.2
jFEX	τ , jet, $E_{\rm T}^{\rm miss}$	0.4 imes 0.4	3.2 - 4.9
gFEX	Large-R jet, E _T ^{miss}	0.2×0.2	< 4.9
fFEX	e/y	Full detector EMEC, HEC, FCal	2.5 - 4.9
fFEX	jet	Full detector FCal	3.2 - 4.9

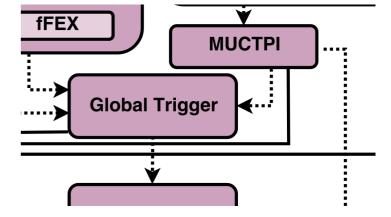


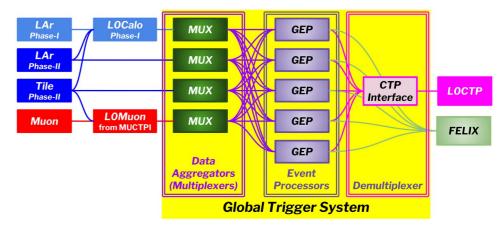

Muon identification based on muon spectrometer and hadronic calorimeter

- data processing moved mainly to offdetector electronics
- Major improvements

AS Level-0 Muon

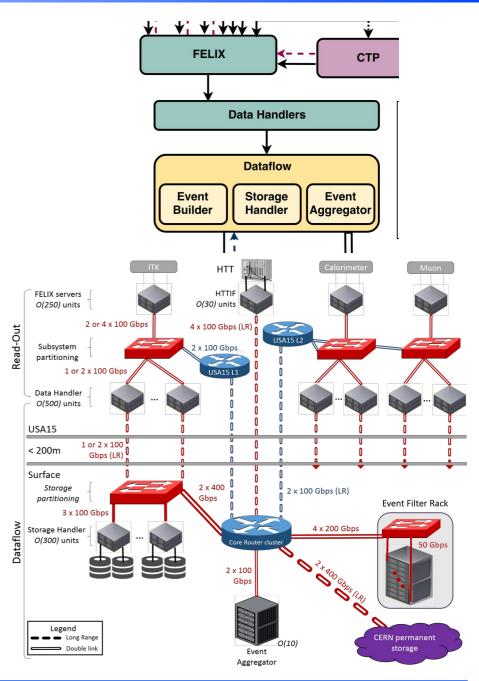
- increased acceptance thanks to extended detector coverage (RPC chambers)
- better momentum resolution by including precision drift chambers (MDT) information
- Selectivity of current Level-1 muon trigger limited by spatial resolution of trigger detectors (RPC, TGC)
 - thanks to MDT $\rightarrow p_T$ resolution close to offline reconstruction
 - significant reduction in trigger rate





ATLAS Level-0 Global

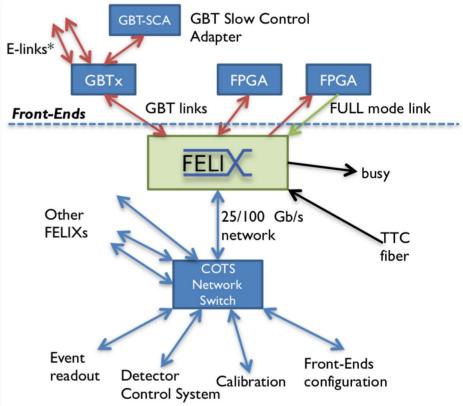
- Aims to bring Event Filter-like algorithms to the hardware trigger level
 - e.g. topological clusters and "anti- $k_{\scriptscriptstyle T}$ " algorithm
 - overall event view enables topological selections
- Time-based multiplexing/demultiplexing design
 - multiple processing boards operating in parallel on different events
 - input and output systems provide data aggregation and serialisation functionalities



ATLAS DAQ: data transport and management

• DAQ infrastructure responsible for

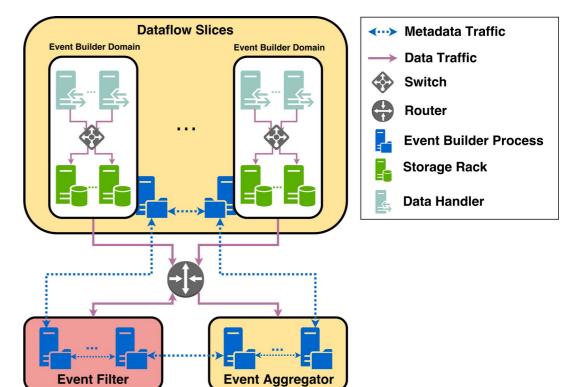
- interfacing the detector readout links to a commercial network domain
- buffering the data and serving them to the Event Filter processors
- discarding rejected events and formatting selected data for offline transfer
- Largely implemented with commodity off the shelf hardware
- Backbone is a multi-layered sliced network
 - baseline design based on Ethernet, do not exclude HPC technologies
- Investigating the use of commodity software
 - filesystem and cluster management



ATLAS DAQ: Detector Interface

- Detector interfacing relies on a concept being deployed for Run 3
 - extended to the whole ATLAS
- Front-end Link Exchange (FELIX) acts a heterogeneous router
 - translates between network and serial links
 - distributes timing and trigger signals
 - as detector-agnostic as possible
 - *still provision for detector specific firmware*
- Implementation based on commercial servers equipped with custom FPGA-based PCIe interfaces
 - plan for 48 10Gbps links per card
 - ~550 cards serving almost 20000 links
- Detector-specific data processing deferred to dedicated servers
 - "Data Handlers"

"FELIX: commissioning the new detector interface for the ATLAS trigger and readout system" N.Ilic, October 3rd

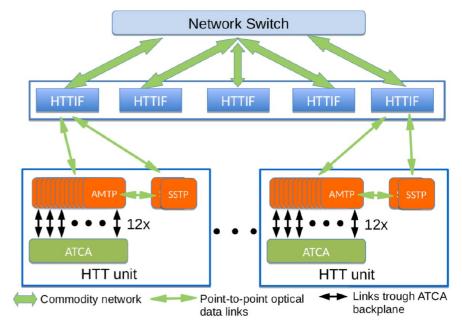


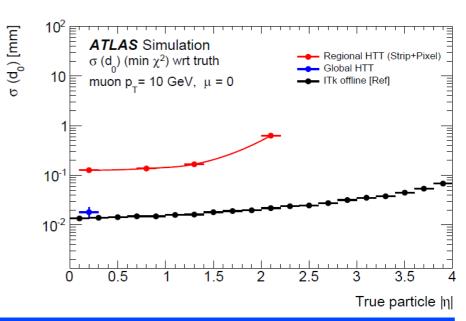
ATLAS DAQ: Storage & Data management

- Extend the DAQ buffering capabilities using a large storage infrastructure
 - decouple real-time domain (Level-0) and software domain (Event Filter)
 - enable delayed processing or fail-over scenarios
- Event building could be either logical or physical
- Event Filter computer farm may be operated similarly to a = batch system
 - quasi-real-time data stream required for online physics and detector monitoring



Comp	Traffic	
Detector Front-ends to	5.2 TB/s	
FELIX to Data Handler	5.2 TB/s	
Data Handlers to Even	5.2TB/s	
Storage Handler to Eve	2.6 TB/s	
Event Filter to HTTIF	Event Filter to rHTT	175 GB/s
	Event Filter to gHTT	560 GB/s
Event Filter to Event A	60 GB/s	


- Similar to Run 3 \rightarrow large computer farm
 - aided by a dedicated tracking system
 - performs the last level of selection from 1 MHz to 10 kHz
- In high pileup environment tracking is key to recover algorithms performance and maintain low thresholds
 - separation of electrons and background jets
 - calculation of global event quantities like E_T^{miss}
 - jet energy resolution
- Baseline implementation is based on CPUs
 - assume 3000 dual-socket servers will suffice on the time-scale of Phase-II
 - in parallel investigations of accelerators (GPGPU & FPGA) and associated dedicated algorithms



ATLAS Hardware Track Trigger

- Based on current ITk tracking software → 10 times larger computer farm would be required
 - ongoing software optimisations potential to significantly reduce this estimate
- HTT (Hardware Track Trigger) massively parallel performing tracking via Associative Memories (AM ASICs)
 - driven by the Event Filter requests
 - the low latency feature enable a transition into a Level-1 tracking system in the evolved scenario
- Two tracking capabilities
 - rHTT: regional tracking with 8 ITk layers and $p_T>2 \text{ GeV} \rightarrow \text{support rate reduction to 400 kHz}$
 - gHTT: global tracking with full ITk data and $p_T>1$ GeV \rightarrow support rate reduction to 10 kHz
- In parallel to HTT development, alternative tracking strategies being assessed
 - using commodity hardware platform: software on CPU, accelerators (GPU, FPGA)

Phase-II ATLAS TDAQ Upgrade documented in the Technical Design Report

Major re-implementation of the Trigger & Data Acquisition System

- apply lessons and experience from Run 1/2/3
- take advantage of the technology evolution
- coping with the HL-LHC conditions requires a major scale-up
- specific solutions to specific challenges
 - Global Trigger
 - Hardware Track Trigger
 - Evolution mechanism

Bonus